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Reikna is a library containing various GPU algorithms built on top of PyCUDA and PyOpenCL. The main design
goals are:

• separation of computation cores (matrix multiplication, random numbers generation etc) from simple transfor-
mations on their input and output values (scaling, typecast etc);

• separation of the preparation and execution stage, maximizing the performance of the execution stage at the
expense of the preparation stage (in other words, aiming at large simulations)

• partial abstraction from CUDA/OpenCL

The installation is as simple as

$ pip install reikna
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CHAPTER 1

Community resources

• Source repository on GitHub;

• Issue tracker, ibid.;

• Discussion forum on Google Groups.

3

http://github.com/Manticore/reikna
http://github.com/Manticore/reikna/issues
https://groups.google.com/d/forum/reikna


reikna Documentation, Release 0.6.3

4 Chapter 1. Community resources



CHAPTER 2

Contents

2.1 Introduction

This section contains a brief illustration of what reikna does. For more details see basic and advanced tutorials.

2.1.1 CLUDA

CLUDA is an abstraction layer on top of PyCUDA/PyOpenCL. Its main purpose is to separate the rest of reikna
from the difference in their APIs, but it can be used by itself too for some simple tasks.

Consider the following example, which is very similar to the one from the index page on PyCUDA documentation:

import numpy
import reikna.cluda as cluda

N = 256

api = cluda.ocl_api()
thr = api.Thread.create()

program = thr.compile("""
KERNEL void multiply_them(

GLOBAL_MEM float *dest,
GLOBAL_MEM float *a,
GLOBAL_MEM float *b)

{
const SIZE_T i = get_local_id(0);
dest[i] = a[i] * b[i];

}
""")

multiply_them = program.multiply_them

a = numpy.random.randn(N).astype(numpy.float32)
b = numpy.random.randn(N).astype(numpy.float32)
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
dest_dev = thr.empty_like(a_dev)

multiply_them(dest_dev, a_dev, b_dev, local_size=N, global_size=N)
print((dest_dev.get() - a * b == 0).all())
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If you are familiar with PyCUDA or PyOpenCL, you will easily understand all the steps we have made here.
The cluda.ocl_api() call is the only place where OpenCL is mentioned, and if you replace it with
cluda.cuda_api() it will be enough to make the code use CUDA. The abstraction is achieved by using generic
API module on the Python side, and special macros (KERNEL, GLOBAL_MEM, and others) on the kernel side.

The argument of compile() method can also be a template, which is quite useful for metaprogramming, and also
used to compensate for the lack of complex number operations in CUDA and OpenCL. Let us illustrate both scenarios
by making the initial example multiply complex arrays. The template engine of choice in reikna is Mako, and
you are encouraged to read about it as it is quite useful. For the purpose of this example all we need to know is that
${python_expression()} is a synthax construction which renders the expression result.

import numpy
from numpy.linalg import norm

from reikna import cluda
from reikna.cluda import functions, dtypes

N = 256
dtype = numpy.complex64

api = cluda.ocl_api()
thr = api.Thread.create()

program = thr.compile("""
KERNEL void multiply_them(

GLOBAL_MEM ${ctype} *dest,
GLOBAL_MEM ${ctype} *a,
GLOBAL_MEM ${ctype} *b)

{
const SIZE_T i = get_local_id(0);
dest[i] = ${mul}(a[i], b[i]);

}
""", render_kwds=dict(

ctype=dtypes.ctype(dtype),
mul=functions.mul(dtype, dtype)))

multiply_them = program.multiply_them

r1 = numpy.random.randn(N).astype(numpy.float32)
r2 = numpy.random.randn(N).astype(numpy.float32)
a = r1 + 1j * r2
b = r1 - 1j * r2
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
dest_dev = thr.empty_like(a_dev)

multiply_them(dest_dev, a_dev, b_dev, local_size=N, global_size=N)
print(norm(dest_dev.get() - a * b) / norm(a * b) <= 1e-6)

Note that CLUDA Thread is created by means of a static method and not using the constructor. The constructor
is reserved for more probable scenario, where we want to include some reikna functionality in a larger program,
and we want it to use the existing context and stream/queue (see the Thread constructor). In this case all further
operations with the thread will be performed using the objects provided.

Here we have passed two values to the template: ctype (a string with C type name), and mul which is a Module
object containing a single multiplication function. The object is created by a function mul() which takes data types
being multiplied and returns a module that was parametrized accordingly. Inside the template the variable mul is
essentially the prefix for all the global C objects (functions, structures, macros etc) from the module. If there is only
one public object in the module (which is recommended), it is a common practice to give it the name consisting just
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of the prefix, so that it could be called easily from the parent code.

For more information on modules, see Tutorial: modules and snippets; the complete list of things available in CLUDA
can be found in CLUDA reference.

2.1.2 Computations

Now it’s time for the main part of the functionality. reikna provides GPGPU algorithms in the form of
Computation-based cores and Transformation-based plug-ins. Computations contain the algorithm itself;
examples are matrix multiplication, reduction, sorting and so on. Transformations are parallel operations on inputs or
outputs of computations, used for scaling, typecast and other auxiliary purposes. Transformations are compiled into
the main computation kernel and are therefore quite cheap in terms of performance.

As an example, we will consider the matrix multiplication.

import numpy
from numpy.linalg import norm
import reikna.cluda as cluda
from reikna.linalg import MatrixMul

api = cluda.ocl_api()
thr = api.Thread.create()

shape1 = (100, 200)
shape2 = (200, 100)

a = numpy.random.randn(*shape1).astype(numpy.float32)
b = numpy.random.randn(*shape2).astype(numpy.float32)
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
res_dev = thr.array((shape1[0], shape2[1]), dtype=numpy.float32)

dot = MatrixMul(a_dev, b_dev, out_arr=res_dev)
dotc = dot.compile(thr)
dotc(res_dev, a_dev, b_dev)

res_reference = numpy.dot(a, b)

print(norm(res_dev.get() - res_reference) / norm(res_reference) < 1e-6)

Most of the code above should be already familiar, with the exception of the creation of MatrixMul object. The
computation constructor takes two array-like objects, representing arrays that will participate in the computation. After
that the computation object has to be compiled. The compile() method requires a Thread object, which serves as
a source of data about the target API and device, and provides an execution queue.

2.1.3 Transformations

Now imagine that you want to multiply complex matrices, but real and imaginary parts of your data are kept in separate
arrays. You could create additional kernels that would join your data into arrays of complex values, but this would re-
quire additional storage and additional calls to GPU. Transformation API allows you to connect these transformations
to the core computation — matrix multiplication — effectively adding the code into the main computation kernel and
changing its signature.

Let us change the previous example and connect transformations to it.

2.1. Introduction 7
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import numpy
from numpy.linalg import norm
import reikna.cluda as cluda
from reikna.core import Type
from reikna.linalg import MatrixMul
from reikna.transformations import combine_complex

api = cluda.ocl_api()
thr = api.Thread.create()

shape1 = (100, 200)
shape2 = (200, 100)

a_re = numpy.random.randn(*shape1).astype(numpy.float32)
a_im = numpy.random.randn(*shape1).astype(numpy.float32)
b_re = numpy.random.randn(*shape2).astype(numpy.float32)
b_im = numpy.random.randn(*shape2).astype(numpy.float32)

arrays = [thr.to_device(x) for x in [a_re, a_im, b_re, b_im]]
a_re_dev, a_im_dev, b_re_dev, b_im_dev = arrays

a_type = Type(numpy.complex64, shape=shape1)
b_type = Type(numpy.complex64, shape=shape2)
res_dev = thr.array((shape1[0], shape2[1]), dtype=numpy.complex64)

dot = MatrixMul(a_type, b_type, out_arr=res_dev)
combine_a = combine_complex(a_type)
combine_b = combine_complex(b_type)

dot.parameter.matrix_a.connect(
combine_a, combine_a.output, a_re=combine_a.real, a_im=combine_a.imag)

dot.parameter.matrix_b.connect(
combine_b, combine_b.output, b_re=combine_b.real, b_im=combine_b.imag)

dotc = dot.compile(thr)

dotc(res_dev, a_re_dev, a_im_dev, b_re_dev, b_im_dev)

res_reference = numpy.dot(a_re + 1j * a_im, b_re + 1j * b_im)

print(norm(res_dev.get() - res_reference) / norm(res_reference) < 1e-6)

We have used a pre-created transformation combine_complex() from reikna.transformations for sim-
plicity; developing a custom transformation is also possible and described in Writing a transformation. From the
documentation we know that it transforms two inputs into one output; therefore we need to attach it to one of the
inputs of dot (identified by its name), and provide names for two new inputs.

Names to attach to are obtained from the documentation for the particular computation; for MatrixMul these are
out, a and b.

In the current example we have attached the transformations to both inputs. Note that the computation has a new
signature now, and the compiled dot object now works with split complex numbers.
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2.2 Tutorial: modules and snippets

Modules and snippets are important primitives in CLUDA which are used in the rest of reikna, although mostly
internally. Even if you do not write modules yourself, you will most likely use operations from the functions mod-
ule, or common transformations from the transformations module, which are essentially snippet and module
factories (callables returning Snippet and Module objects). Therefore it helps if you know how they work under
the hood.

2.2.1 Snippets

Snippets are Mako template defs (essentially functions returning rendered text) with the associated dictionary of render
keywords. Some computations which are parametrized by custom code (for example, PureParallel) require this
code to be provided in form of a snippet with a certain call signature. When a snippet is used in a template, the result
is quite straightworward: its template function is called, rendering and returning its contents, just as a normal Mako
def.

Let us demonstrate it with a simple example. Consider the following snippet:

add = Snippet("""
<%def name="add(varname)">
${varname} + ${num}
</%def>
""",
render_kwds=dict(num=1))

Now we can compile a template which uses this snippet:

program = thr.compile("""
KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = ${add(’x’)};

}
""",
render_kwds=dict(add=add))

As a result, the code that gets compiled is

KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = x + 1;

}

If the snippet is used without parentheses (e.g. ${add}), it is equivalent to calling it without arguments (${add()}).

The root code that gets passed to compile() can be viewed as a snippet with an empty signature.

2.2.2 Modules

Modules are quite similar to snippets in a sense that they are also Mako defs with an associated dictionary of render
keywords. The difference lies in the way they are processed. Consider a module containing a single function:

2.2. Tutorial: modules and snippets 9
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add = Module("""
<%def name="add(prefix, arg)">
WITHIN_KERNEL int ${prefix}(int x)
{

return x + ${num} + ${arg};
}
</%def>
""",
render_kwds=dict(num=1))

Modules contain complete C entities (function, macros, structures) and get rendered in the root level of the source file.
In order to avoid name clashes, their def gets a string as a first argument, which it has to use to prefix these entities’
names. If the module contains only one entity that is supposed to be used by the parent code, it is a good idea to set its
name to prefix only, to simplify its usage.

Let us now create a kernel that uses this module:

program = thr.compile("""
KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = ${add(2)}(x);

}
""",
render_kwds=dict(add=add))

Before the compilation render keywords are inspected, and if a module object is encountered, the following things
happen:

1. This object’s render_kwds are inspected recursively and any modules there are rendered in the same way as
described here, producing a source file.

2. The module itself gets assigned a new prefix and its template function is rendered with this prefix as the first
argument, with the positional arguments given following it. The result is attached to the source file.

3. The corresponding value in the current render_kwds is replaced by the newly assigned prefix.

With the code above, the rendered module will produce the code

WITHIN_KERNEL int _module0_(int x)
{

return x + 1 + 2;
}

and the add keyword in the render_kwds gets its value changed to _module0_. Then the main code is rendered
and appended to the previously renderd parts, giving

WITHIN_KERNEL int _module0_(int x)
{

return x + 1;
}

KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = _module0_(x);

}
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reikna Documentation, Release 0.6.3

which is then passed to the compiler. If your module’s template def does not take any arguments except for prefix,
you can call it in the parent template just as ${add} (without empty parentheses).

Warning: Note that add in this case is not a string, it is an object that has __str__() defined. If you want
to concatenate a module prefix with some other string, you have to either call str() explicitly (str(add) +
"abc"), or concatenate it inside a template (${add} abc).

Modules can reference snippets in their render_kwds, which, in turn, can reference other modules. This produces
a tree-like structure with the snippet made from the code passed by user at the root. When it is rendered, it is traversed
depth-first, modules are extracted from it and arranged in a flat list in the order of appearance. Their positions in
render_kwds are replaced by assigned prefixes. This flat list is then rendered, producing a single source file being
fed to the compiler.

Note that if the same module object was used without arguments in several other modules or in the kernel itself, it will
only be rendered once. Therefore one can create a “root” module with the data structure declaration and then use that
structure in other modules without producing type errors on compilation.

2.2.3 Shortcuts

The amount of boilerplate code can be somewhat reduced by using Snippet.create and Module.create
constructors. For the snippet above it would look like:

add = Snippet.create(
lambda varname: "${varname} + ${num}",
render_kwds=dict(num=1))

Note that the lambda here serves only to provide the information about the Mako def’s signature. Therefore it should
return the template code regardless of the actual arguments passed.

If the argument list is created dynamically, you can use template_def() with a normal constructor:

argnames = [’varname’]
add = Snippet(

template_def(argnames, "${varname} + ${num}"),
render_kwds=dict(num=1))

Modules have a similar shortcut constructor. The only difference is that by default the resulting template def has one
positional argument called prefix. If you provide your own signature, its first positional argument will receive the
prefix value.

add = Module.create("""
WITHIN_KERNEL int ${prefix}(int x)
{

return x + ${num};
}
""",
render_kwds=dict(num=1))

Of course, both Snippet and Module constructors can take already created Mako defs, which is convenient if you
keep templates in a separate file.

2.2.4 Module and snippet discovery

Sometimes you may want to pass a module or a snippet inside a template as an attribute of a custom object. In order
for CLUDA to be able to discover and process it without modifying your original object, you need to make your
object comply to a discovery protocol. The protocol method takes a processing function and is expected to return a

2.2. Tutorial: modules and snippets 11
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new object of the same class with the processing function applied to all the attributes that may contain a module or a
snippet. By default, objects of type tuple, list, and dict are discoverable.

For example:

class MyClass:

def __init__(self, coeff, mul_module, div_module):
self.coeff = coeff
self.mul = mul_module
self.div = div_module

def __process_modules__(self, process):
return MyClass(self.coeff, process(self.mul), process(self.div))

2.2.5 Nontrivial example

Modules were introduced to help split big kernels into small reusable pieces which in CUDA or OpenCL program
would be put into different source or header files. For example, a random number generator may be assembled from
a function generating random integers, a function transforming these integers into random numbers with a certain
distribution, and a PureParallel computation calling these functions and saving results to global memory. These
two functions can be extracted into separate modules, so that a user could call them from some custom kernel if he
does not need to store the intermediate results.

Going further with this example, one notices that functions that produce randoms with sophisticated distributions are
often based on simpler distributions. For instance, the commonly used Marsaglia algorithm for generating Gamma-
distributed random numbers requires several uniformly and normally distributed randoms. Normally distributed ran-
doms, in turn, require several uniformly distributed randoms — with the range which differs from the one for uniformly
distributed randoms used by the initial Gamma distribution. Instead of copy-pasting the function or setting its param-
eters dynamically (which in more complicated cases may affect the performance), one just specifies the dependencies
between modules and lets the underlying system handle things.

The final render tree may look like:

Snippet(
PureParallel,
render_kwds = {

base_rng -> Snippet(...)
gamma -> Snippet(

} Gamma,
render_kwds = {
uniform -> Snippet(...)
normal -> Snippet(

} Normal,
) render_kwds = {

uniform -> Snippet(...)
}

)

2.3 Tutorial: basics

2.3.1 Usage of computations

All reikna computation classes are derived from the Computation class and therefore share the same API and
behavior. A computation object is an opaque typed function-like object containing all the information necessary to

12 Chapter 2. Contents
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generate GPU kernels that implement some algorithm, along with necessary internal temporary and persistent memory
buffers. Before use it needs to be compiled by calling compile() for a given Thread (thus using its associated
device and queue). This method returns a ComputationCallable object which takes GPU arrays and scalar
parameters and calls its internal kernels.

2.3.2 Computations and transformations

One often needs to perform some simple processing of the input or output values of a computation. This can be
scaling, splitting complex values into components, padding, and so on. Some of these operations require additional
memory to store intermediate results, and all of them involve additional overhead of calling the kernel, and passing
values to and from the device memory. Reikna porvides an API to define such transformations and attach them to
“core” computations, effectively compiling the transformation code into the main kernel(s), thus avoiding all these
drawbacks.

2.3.3 Transformation tree

Before talking about transformations themselves, we need to take a closer look at the computation signatures. Ev-
ery Computation object has a signature attribute containing funcsigs.Signature object. It is the
same signature object as can be exctracted from any Python function using funcsigs.signature function (or
inspect.signature from the standard library for Python >= 3.3). When the computation object is compiled, the
resulting callable will have this exact signature.

The base signature for any computation can be found in its documentation (and, sometimes, can depend on the argu-
ments passed to its constructor — see, for example, PureParallel). The signature can change if a user connects
transformations to some parameter via connect(); in this case the signature attribute will change accordingly.

All attached transformations form a tree with roots being the base parameters computation has right after creation, and
leaves forming the user-visible signature, which the compiled ComputationCallable will have.

As an example, let us consider a pure parallel computation object with one output, two inputs and a scalar parameter,
which performs the calculation out = in1 + in2 + param:

from __future__ import print_function
import numpy

from reikna import cluda
from reikna.cluda import Snippet
from reikna.core import Transformation, Type, Annotation, Parameter
from reikna.algorithms import PureParallel
import reikna.transformations as transformations

arr_t = Type(numpy.float32, shape=128)
carr_t = Type(numpy.complex64, shape=128)

comp = PureParallel(
[Parameter(’out’, Annotation(carr_t, ’o’)),
Parameter(’in1’, Annotation(carr_t, ’i’)),
Parameter(’in2’, Annotation(carr_t, ’i’)),
Parameter(’param’, Annotation(numpy.float32))],
"""
VSIZE_T idx = ${idxs[0]};
${out.store_idx}(

idx, ${in1.load_idx}(idx) + ${in2.load_idx}(idx) + ${param});
""")

2.3. Tutorial: basics 13
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The details of creating the computation itself are not important for this example; they are provided here just for the
sake of completeness. The initial transformation tree of comp object looks like:

| out | >>
>> | in1 |
>> | in2 |
>> | param |

Here the insides of || are the base computation (the one defined by the developer), and >> denote inputs and outputs
provided by the user. The computation signature is:

>>> for param in comp.signature.parameters.values():
... print(param.name + ":" + repr(param.annotation))
out:Annotation(Type(complex64, shape=(128,), strides=(8,)), role=’o’)
in1:Annotation(Type(complex64, shape=(128,), strides=(8,)), role=’i’)
in2:Annotation(Type(complex64, shape=(128,), strides=(8,)), role=’i’)
param:Annotation(float32)

Now let us attach the transformation to the output which will split it into two halves: out1 = out / 2, out2 =
out / 2:

tr = transformations.split_complex(comp.parameter.out)
comp.parameter.out.connect(tr, tr.input, out1=tr.real, out2=tr.imag)

We have used the pre-created transformation here for simplicity; writing custom transformations is described in Writ-
ing a transformation.

In addition, we want in2 to be scaled before being passed to the main computation. To achieve this, we connect the
scaling transformation to it:

tr = transformations.mul_param(comp.parameter.in2, numpy.float32)
comp.parameter.in2.connect(tr, tr.output, in2_prime=tr.input, param2=tr.param)

The transformation tree now looks like:

| out | ----> out1 >>
| | \-> out2 >>

>> | in1 |
>> in2_prime ------> | in2 |
>> param2 ----/ | |

| param |

As can be seen, nothing has changed from the base computation’s point of view: it still gets the same inputs and
outputs to the same array. But user-supplied parameters (>>) have changed, which can be also seen in the value of the
signature:

>>> for param in comp.signature.parameters.values():
... print(param.name + ":" + repr(param.annotation))
out1:Annotation(Type(float32, shape=(128,), strides=(4,)), role=’o’)
out2:Annotation(Type(float32, shape=(128,), strides=(4,)), role=’o’)
in1:Annotation(Type(complex64, shape=(128,), strides=(8,)), role=’i’)
in2_prime:Annotation(Type(complex64, shape=(128,), strides=(8,)), role=’i’)
param2:Annotation(float32)
param:Annotation(float32)

Notice that the order of the final signature is obtained by traversing the transformation tree depth-first, starting from
the base parameters. For more details see the note in the documentation for connect().

The resulting computation returns the value in1 + (in2_prime * param2) + param split in half. In order
to run it, we have to compile it first. When prepare_for is called, the data types and shapes of the given arguments
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will be propagated to the roots and used to prepare the original computation.

api = cluda.ocl_api()
thr = api.Thread.create()

in1_t = comp.parameter.in1
in2p_t = comp.parameter.in2_prime

out1 = thr.empty_like(comp.parameter.out1)
out2 = thr.empty_like(comp.parameter.out2)
in1 = thr.to_device(numpy.ones(in1_t.shape, in1_t.dtype))
in2_prime = thr.to_device(numpy.ones(in2p_t.shape, in2p_t.dtype))

c_comp = comp.compile(thr)
c_comp(out1, out2, in1, in2_prime, 4, 3)

2.3.4 Transformation restrictions

There are some limitations of the transformation mechanics:

1. Transformations are purely parallel, that is they cannot use local memory. In fact, they are very much like
PureParallel computations, except that the indices they use are defined by the main computation, and not
set by the GPU driver.

2. External endpoints of the output transformations cannot point to existing nodes in the transformation tree. This
is the direct consequence of the first limitation — it would unavoidably create races between memory writes
from different branches. On the other hand, input transformations can be safely connected to existing nodes,
including base nodes (although note that inputs are not cached; so even if you load twice from the same index
of the same input node, the global memory will be queried twice).

2.4 Tutorial: advanced topics

This tutorial goes into more detail about the internals of computations and transformations, describing how to write
them.

2.4.1 Mako basics

Reikna uses Mako extensively as a templating engine for transformations and computations. For the purpose of this
tutorial you only need to know several things about the synthax:

• Most of Mako synthax is plain Python, with the set of global variables specified externally by the code doing
the template rendering

• ${expr} evaluates Python expression expr, calls str() on the result and puts it into the text

• a pair of <% and %> executes Python code inside, which may introduce some local variables

• a pair of <%def name="func(a, b)"> and </%def> defines a template function, which actually be-
comes a Python function which can be called as func(a, b) from the other part of the template and returns
a rendered string

2.4. Tutorial: advanced topics 15
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2.4.2 Writing a transformation

Some common transformations are already available from transformations module. But you can create a
custom one if you need to. Transformations are based on the class Transformation, and are very similar to
PureParallel instances, with some additional limitations.

Let us consider a (not very useful, but quite involved) example:

tr = Transformation(
[

Parameter(’out1’, Annotation(Type(numpy.float32, shape=100), ’o’)),
Parameter(’out2’, Annotation(Type(numpy.float32, shape=80), ’o’)),
Parameter(’in1’, Annotation(Type(numpy.float32, shape=100), ’i’)),
Parameter(’in2’, Annotation(Type(numpy.float32, shape=100), ’i’)),
Parameter(’param’, Annotation(Type(numpy.float32))),

],
"""
VSIZE_T idx = ${idxs[0]};
float i1 = ${in1.load_same};
float i2 = ${in2.load_idx}(100 - idx) * ${param};
${out1.store_same}(i1);
if (idx < 80)

${out2.store_same}(i2);
""",
connectors=[’in1’, ’out1’])

Connectors. A transformation gets activated when the main computation attempts to load some value from some index
in global memory, or store one to some index. This index is passed to the transformation attached to the corresponding
parameter, and used to invoke loads/stores either without changes (to perform strictly elementwise operations), or,
possibly, with some changes (as the example illustrates).

If some parameter is only queried once, and only using load_same or store_same, it is called a connector, which
means that it can be used to attach the transformation to a computation. Currently connectors cannot be detected
automatically, so it is the responsibility of the user to provide a list of them to the constructor. By default all parameters
are considered to be connectors.

Shape changing. Parameters in transformations are typed, and it is possible to change data type or shape of a parameter
the transformation is attached to. In our example out2 has length 80, so the current index is checked before the output
to make sure there is no out of bounds access.

Parameter objects. The transformation example above has some hardcoded stuff, for example the type of parameters
(float), or their shapes (100 and 80). These can be accessed from argument objects out1, in1 etc; they all have
the type KernelParameter. In addition, the transformation code gets an Indices object with the name idxs,
which allows one to manipulate index names directly.

2.4.3 Writing a computation

A computation must derive Computation. As an example, let us create a computation which calculates output
= input1 + input2 * param.

Defining a class:

import numpy

from reikna.helpers import *
from reikna.core import *

class TestComputation(Computation):
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Each computation class has to define the constructor, and the plan building callback.

Constructor. Computation constructor takes a list of computation parameters, which the deriving class constructor
has to create according to arguments passed to it. You will often need Type objects, which can be extracted from ar-
rays, scalars or other Type objects with the help of from_value() (or they can be passed straight to Annotation)
which does the same thing.

def __init__(self, arr, coeff):
assert len(arr.shape) == 1
Computation.__init__(self, [

Parameter(’output’, Annotation(arr, ’o’)),
Parameter(’input1’, Annotation(arr, ’i’)),
Parameter(’input2’, Annotation(arr, ’i’)),
Parameter(’param’, Annotation(coeff))])

In addition to that, the constructor can create some internal state which will be used by the plan builder.

Plan builder. The second method is called when the computation is being compiled, and has to fill and return the
computation plan — a sequence of kernel calls, plus maybe some temporary or persistent internal allocations its
kernels use. In addition, the plan can include calls to nested computations.

The method takes two predefined positional parameters, plus KernelArgument objects corresponding to computa-
tion parameters. The plan_factory is a callable that creates a new ComputationPlan object (in some cases
you may want to recreate the plan, for example, if the workgroup size you were using turned out to be too big), and
device_params is a DeviceParameters object, which is used to optimize the computation for the specific
device. The method must return a filled ComputationPlan object.

For our example we only need one action, which is the execution of an elementwise kernel:

def _build_plan(self, plan_factory, device_params, output, input1, input2, param):
plan = plan_factory()

template = template_from(
"""
<%def name=’testcomp(kernel_declaration, k_output, k_input1, k_input2, k_param)’>
${kernel_declaration}
{

VIRTUAL_SKIP_THREADS;
const VSIZE_T idx = virtual_global_id(0);
${k_output.ctype} result =

${k_input1.load_idx}(idx) +
${mul}(${k_input2.load_idx}(idx), ${k_param});

${k_output.store_idx}(idx, result);
}
</%def>
""")

plan.kernel_call(
template.get_def(’testcomp’),
[output, input1, input2, param],
global_size=output.shape,
render_kwds=dict(mul=functions.mul(input2.dtype, param.dtype)))

return plan

Every kernel call is based on the separate Mako template def. The template can be specified as a string using
template_def(), or loaded as a separate file. Usual pattern in this case is to call the template file same as the
file where the computation class is defined (for example, testcomp.mako for testcomp.py), and store it in
some variable on module load using template_for() as TEMPLATE = template_for(__file__).
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The template function should take the same number of positional arguments as the kernel plus one; you can view
<%def ... > part as an actual kernel definition, but with the arguments being KernelParameter objects
containing parameter metadata. The first argument will contain the string with the kernel declaration.

Also, depending on whether the corresponding argument is an output array, an input array or a scalar parameter, the
object can be used as ${obj.store_idx}(index, val), ${obj.load_idx}(index) or ${obj}. This
will produce the corresponding request to the global memory or kernel arguments.

If you need additional device functions, they have to be specified between <%def ... > and
${kernel_declaration}. Obviously, these functions can still use dtype and ctype object properties, al-
though store_idx and load_idx will most likely result in compilation error (since they are rendered as macros
using main kernel arguments).

Since kernel call parameters (global_size and local_size) are specified on creation, all kernel calls are ren-
dered as CLUDA static kernels (see compile_static()) and therefore can use all the corresponding macros and
functions (like virtual_global_flat_id() in our kernel). Also, they must have VIRTUAL_SKIP_THREADS
at the beginning of the kernel which remainder threads (which can be present, for example, if the workgroup size is
not a multiple of the global size).

2.5 API reference

2.5.1 Version queries

2.5.2 Helpers

2.5.3 CLUDA layer

CLUDA is the foundation of reikna. It provides the unified access to basic features of CUDA and OpenCL, such as
memory operations, compilation and so on. It can also be used by itself, if you want to write GPU API-independent
programs and happen to only need a small subset of GPU API. The terminology is borrowed from OpenCL, since it
is a more general API.

API module

Modules for all APIs have the same generalized interface. It is referred here (and references from other parts of this
documentation) as reikna.cluda.api.

Temporary Arrays

Each Thread contains a special allocator for arrays with data that does not have to be persistent all the time. In many
cases you only want some array to keep its contents between several kernel calls. This can be achieved by manually
allocating and deallocating such arrays every time, but it slows the program down, and you have to synchronize the
queue because allocation commands are not serialized. Therefore it is advantageous to use temp_array() method
to get such arrays. It takes a list of dependencies as an optional parameter which gives the allocator a hint about which
arrays should not use the same physical allocation.

Function modules

Kernel toolbox

The stuff available for the kernel passed for compilation consists of two parts.
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First, there are several objects available at the template rendering stage, namely numpy, reikna.cluda.dtypes
(as dtypes), and reikna.helpers (as helpers).

Second, there is a set of macros attached to any kernel depending on the API it is being compiled for:

CUDA
If defined, specifies that the kernel is being compiled for CUDA API.

COMPILE_FAST_MATH
If defined, specifies that the compilation for this kernel was requested with fast_math == True.

LOCAL_BARRIER
Synchronizes threads inside a block.

WITHIN_KERNEL
Modifier for a device-only function declaration.

KERNEL
Modifier for the kernel function declaration.

GLOBAL_MEM
Modifier for the global memory pointer argument.

LOCAL_MEM
Modifier for the statically allocated local memory variable.

LOCAL_MEM_DYNAMIC
Modifier for the dynamically allocated local memory variable.

LOCAL_MEM_ARG
Modifier for the local memory argument in the device-only functions.

INLINE
Modifier for inline functions.

SIZE_T
The type of local/global IDs and sizes. Equal to unsigned int for CUDA, and size_t for OpenCL (which
can be 32- or 64-bit unsigned integer, depending on the device).

SIZE_T get_local_id(int dim)

SIZE_T get_group_id(int dim)

SIZE_T get_global_id(int dim)

SIZE_T get_local_size(int dim)

SIZE_T get_num_groups(int dim)

SIZE_T get_global_size(int dim)
Local, group and global identifiers and sizes. In case of CUDA mimic the behavior of corresponding OpenCL
functions.

VSIZE_T
The type of local/global IDs in the virtual grid. It is separate from SIZE_T because the former is intended
to be equivalent to what the backend is using, while VSIZE_T is a separate type and can be made larger than
SIZE_T in the future if necessary.

ALIGN(int)
Used to specify an explicit alignment (in bytes) for fields in structures, as

typedef struct {
char ALIGN(4) a;
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int b;
} MY_STRUCT;

VIRTUAL_SKIP_THREADS
This macro should start any kernel compiled with compile_static(). It skips all the empty threads result-
ing from fitting call parameters into backend limitations.

VSIZE_T virtual_local_id(int dim)

VSIZE_T virtual_group_id(int dim)

VSIZE_T virtual_global_id(int dim)

VSIZE_T virtual_local_size(int dim)

VSIZE_T virtual_num_groups(int dim)

VSIZE_T virtual_global_size(int dim)

VSIZE_T virtual_global_flat_id()

VSIZE_T virtual_global_flat_size()
Only available in StaticKernel objects obtained from compile_static(). Since its dimensions can
differ from actual call dimensions, these functions have to be used.

Datatype tools

This module contains various convenience functions which operate with numpy.dtype objects.

2.5.4 Core functionality

Classes necessary to create computations and transformations are exposed from the core module.
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Computation signatures

Core classes

Result and attribute classes

2.5.5 Computations

Algorithms

Linear algebra

Fast Fourier transform

Discrete harmonic transform

Counter-based random number generators

2.5.6 Transformations

2.6 Release history

2.6.1 0.6.3 (18 Jun 2014)

• FIXED: (@schreon) a bug preventing the usage of EntrywiseNorm with custom axes.

• FIXED: (PR by @SyamGadde) removed syntax constructions incompatible with Python 2.6.

• FIXED: added Python 3.4 to the list of classifiers.

2.6.2 0.6.2 (20 Feb 2013)

• ADDED: pow() function module in CLUDA.

• ADDED: a function any_api() that returns some supported GPGPU API module.

• ADDED: an example of Reduce with a custom data type.

• FIXED: a Py3 compatibility issue in Reduce introduced in 0.6.1.

• FIXED: a bug due to the interaction between the implementation of from_trf() and the logic of processing
nested computations.

• FIXED: a bug in FFT leading to undefined behavior on some OpenCL platforms.

2.6.3 0.6.1 (4 Feb 2013)

• FIXED: Reduce can now pick a decreased work group size if the attached transformations are too demanding.
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2.6.4 0.6.0 (27 Dec 2013)

• CHANGED: some computations were moved to sub-packages: PureParallel, Transpose and Reduce
to reikna.algorithms, MatrixMul and EntrywiseNorm to reikna.linalg.

• CHANGED: scale_const and scale_param were renamed to mul_const() and mul_param(), and
the scalar parameter name of the latter was renamed from coeff to param.

• ADDED: two transformations for norm of an arbitrary order: norm_const() and norm_param().

• ADDED: stub transformation ignore().

• ADDED: broadcasting transformations broadcast_const() and broadcast_param().

• ADDED: addition transformations add_const() and add_param().

• ADDED: EntrywiseNorm computation.

• ADDED: support for multi-dimensional sub-arrays in c_constant() and flatten_dtype().

• ADDED: helper functions extract_field() and c_path() to work in conjunction with
flatten_dtype().

• ADDED: a function module add().

• FIXED: casting a coefficient in the normal_bm() template to a correct dtype.

• FIXED: cast() avoids casting if the value already has the target dtype (since numpy.cast does not work
with struct dtypes, see issue #4148).

• FIXED: a error in transformation module rendering for scalar parameters with struct dtypes.

• FIXED: normalizing dtypes in several functions from dtypes to avoid errors with numpy dtype shortcuts.

2.6.5 0.5.2 (17 Dec 2013)

• ADDED: normal_bm() now supports complex dtypes.

• FIXED: a nested PureParallel can now take several identical argument objects as arguments.

• FIXED: a nested computation can now take a single input/output argument (e.g. a temporary array) as separate
input and output arguments.

• FIXED: a critical bug in CBRNG that could lead to the counter array not being updated.

• FIXED: convenience constructors of CBRNG can now properly handle None as samplers_kwds.

2.6.6 0.5.1 (30 Nov 2013)

• FIXED: a possible infinite loop in compile_static() local size finding algorithm.

2.6.7 0.5.0 (25 Nov 2013)

• CHANGED: KernelParameter is not derived from Type anymore (although it still retains the correspond-
ing attributes).

• CHANGED: Predicate now takes a dtype’d value as empty, not a string.
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• CHANGED: The logic of processing struct dtypes was reworked, and adjust_alignment was removed.
Instead, one should use align() (which does not take a Thread parameter) to get a dtype with the offsets
and itemsize equal to those a compiler would set. On the other hand, ctype_module() attempts to set the
alignments such that the field offsets are the same as in the given numpy dtype (unless ignore_alignments
flag is set).

• ADDED: struct dtypes support in c_constant().

• ADDED: flatten_dtype() helper function.

• ADDED: added transposed_a and transposed_b keyword parameters to MatrixMul.

• ADDED: algorithm cascading to Reduce, leading to 3-4 times increase in performance.

• ADDED: polar_unit() function module in CLUDA.

• ADDED: support for arrays with 0-dimensional shape as computation and transformation arguments.

• FIXED: a bug in Reduce, which lead to incorrect results in cases when the reduction power is exactly equal to
the maximum one.

• FIXED: Transpose now works correctly for struct dtypes.

• FIXED: bounding_power_of_2 now correctly returns 1 instead of 2 being given 1 as an argument.

• FIXED: compile_static() local size finding algorithm is much less prone to failure now.

2.6.8 0.4.0 (10 Nov 2013)

• CHANGED: supports_dtype() method moved from Thread to DeviceParameters.

• CHANGED: fast_math keyword parameter moved from Thread constructor to compile()
and compile_static(). It is also False by default, instead of True. Correspondingly,
THREAD_FAST_MATH macro was renamed to COMPILE_FAST_MATH.

• CHANGED: CBRNG modules are using the dtype-to-ctype support. Correspondingly, the C types for keys and
counters can be obtained by calling ctype_module() on key_dtype and counter_dtype attributes.
The module wrappers still define their types, but their names are using a different naming convention now.

• ADDED: module generator for nested dtypes (ctype_module()) and a function to get natural field offsets
for a given API/device (adjust_alignment).

• ADDED: fast_math keyword parameter in compile(). In other words, now fast_math can be set per
computation.

• ADDED: ALIGN macro is available in CLUDA kernels.

• ADDED: support for struct types as Computation arguments (for them, the ctypes attributes contain the
corresponding module obtained with ctype_module()).

• ADDED: support for non-sequential axes in Reduce.

• FIXED: bug in the interactive Thread creation (reported by James Bergstra).

• FIXED: Py3-incompatibility in the interactive Thread creation.

• FIXED: some code paths in virtual size finding algorithm could result in a type error.

• FIXED: improved the speed of test collection by reusing Thread objects.

2.6. Release history 23



reikna Documentation, Release 0.6.3

2.6.9 0.3.6 (9 Aug 2013)

• ADDED: the first argument to the Transformation or PureParallel snippet is now a
reikna.core.Indices object instead of a list.

• ADDED: classmethod PureParallel.from_trf(), which allows one to create a pure parallel computa-
tion out of a transformation.

• FIXED: improved Computation.compile() performance for complicated computations by precreating
transformation templates.

2.6.10 0.3.5 (6 Aug 2013)

• FIXED: bug with virtual size algorithms returning floating point global and local sizes in Py2.

2.6.11 0.3.4 (3 Aug 2013)

• CHANGED: virtual sizes algorithms were rewritten and are now more maintainable. In addition, virtual sizes
can now handle any number of dimensions of local and global size, providing the device can support the corre-
sponding total number of work items and groups.

• CHANGED: id- and size- getting kernel functions now have return types corresponding to their equivalents.
Virtual size functions have their own independent return type.

• CHANGED: Thread.compile_static() and ComputationPlan.kernel_call() take global
and local sizes in the row-major order, to correspond to the matrix indexing in load/store macros.

• FIXED: requirements for PyCUDA extras (a currently non-existent version was specified).

• FIXED: an error in gamma distribution sampler, which lead to slightly wrong shape of the resulting distribution.

2.6.12 0.3.3 (29 Jul 2013)

• FIXED: package metadata.

2.6.13 0.3.2 (29 Jul 2013)

• ADDED: same module object, when being called without arguments from other modules/snippets, is rendered
only once and returns the same prefix each time. This allows one to create structure declarations that can be
used by functions in several modules.

• ADDED: reworked cbrng module and exposed kernel interface of bijections and samplers.

• CHANGED: slightly changed the algorithm that determines the order of computation parameters after a trans-
formation is connected to it. Now the ordering inside a list of initial computation parameters or a list of a single
transformation parameters is preserved.

• CHANGED: kernel declaration string is now passed explicitly to a kernel template as the first parameter.

• FIXED: typo in FFT performance test.

• FIXED: bug in FFT that could result in changing the contents of the input array to one of the intermediate
results.

• FIXED: missing data type normalization in c_constant().

• FIXED: Py3 incompatibility in cluda.cuda.
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• FIXED: updated some obsolete computation docstrings.

2.6.14 0.3.1 (25 Jul 2013)

• FIXED: too strict array type check for nested computations that caused some tests to fail.

• FIXED: default values of scalar parameters are now processed correctly.

• FIXED: Mako threw name-not-found exceptions on some list comprehensions in FFT template.

• FIXED: some earlier-introduced errors in tests.

• INTERNAL: pylint was ran and many stylistic errors fixed.

2.6.15 0.3.0 (23 Jul 2013)

Major core API change:

• Computations have function-like signatures with the standard Signature interface; no more separation of
inputs/outputs/scalars.

• Generic transformations were ditched; all the transformations have static types now.

• Transformations can now change array shapes, and load/store from/to external arrays in output/input transfor-
mations.

• No flat array access in kernels; all access goes through indices. This opens the road for correct and automatic
stride support (not fully implemented yet).

• Computations and accompanying classes are stateless, and their creation is more straightforward.

Other stuff:

• Bumped Python requirements to >=2.6 or >=3.2, and added a dependency on funcsig.

• ADDED: more tests for cluda.functions.

• ADDED: module/snippet attributes discovery protocol for custom objects.

• ADDED: strides support to array allocation functions in CLUDA.

• ADDED: modules can now take positional arguments on instantiation, same as snippets.

• CHANGED: Elementwise becomes PureParallel (as it is not always elementwise).

• FIXED: incorrect behavior of functions.norm() for non-complex arguments.

• FIXED: undefined variable in functions.exp() template (reported by Thibault North).

• FIXED: inconsistent block/grid shapes in static kernels

2.6.16 0.2.4 (11 May 2013)

• ADDED: ability to introduce new scalar arguments for nested computations (the API is quite ugly at the mo-
ment).

• FIXED: handling prefixes properly when connecting transformations to nested computations.

• FIXED: bug in dependency inference algorithm which caused it to ignore allocations in nested computations.
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2.6.17 0.2.3 (25 Apr 2013)

• ADDED: explicit release() (primarily for certain rare CUDA use cases).

• CHANGED: CLUDA API discovery interface (see the documentation).

• CHANGED: The part of CLUDA API that is supposed to be used by other layers was moved to the
__init__.py.

• CHANGED: CLUDA Context was renamed to Thread, to avoid confusion with PyCUDA/PyOpenCL con-
texts.

• CHANGED: signature of create(); it can filter devices now, and supports interactive mode.

• CHANGED: Module with snippet=True is now Snippet

• FIXED: added transformation.mako and cbrng_ref.py to the distribution package.

• FIXED: incorrect parameter generation in test/cluda/cluda_vsizes/ids.

• FIXED: skipping testcases with incompatible parameters in test/cluda/cluda_vsizes/ids and
sizes.

• FIXED: setting the correct length of max_num_groups in case of CUDA and a device with CC < 2.

• FIXED: typo in cluda.api_discovery.

2.6.18 0.2.2 (20 Apr 2013)

• ADDED: ability to use custom argument names in transformations.

• ADDED: multi-argument mul().

• ADDED: counter-based random number generator CBRNG.

• ADDED: reikna.elementwise.Elementwise now supports argument dependencies.

• ADDED: Module support in CLUDA; see Tutorial: modules and snippets for details.

• ADDED: template_def().

• CHANGED: reikna.cluda.kernel.render_template_source is the main renderer now.

• CHANGED: FuncCollector class was removed; functions are now used as common modules.

• CHANGED: all templates created with template_for() are now rendered with from __future__
import division.

• CHANGED: signature of OperationRecorder.add_kernel takes a renderable instead of a full template.

• CHANGED: compile_static() now takes a template instead of a source.

• CHANGED: reikna.elementwise.Elementwise now uses modules.

• FIXED: potential problem with local size finidng in static kernels (first approximation for the maximum work-
group size was not that good)

• FIXED: some OpenCL compilation warnings caused by an incorrect version querying macro.

• FIXED: bug with incorrect processing of scalar global size in static kernels.

• FIXED: bug in variance estimates in CBRNG tests.

• FIXED: error in the temporary varaiable type in reikna.cluda.functions.polar() and
reikna.cluda.functions.exp().
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2.6.19 0.2.1 (8 Mar 2013)

• FIXED: function names for kernel polar(), exp() and conj().

• FIXED: added forgotten kernel norm() handler.

• FIXED: bug in Py.Test testcase execution hook which caused every test to run twice.

• FIXED: bug in nested computation processing for computation with more than one kernel.

• FIXED: added dependencies between MatrixMul kernel arguments.

• FIXED: taking into account dependencies between input and output arrays as well as the ones between internal
allocations — necessary for nested computations.

• ADDED: discrete harmonic transform DHT (calculated using Gauss-Hermite quadrature).

2.6.20 0.2.0 (3 Mar 2013)

• Added FFT computation (slightly optimized PyFFT version + Bluestein’s algorithm for non-power-of-2 FFT
sizes)

• Added Python 3 compatibility

• Added Thread-global automatic memory packing

• Added polar(), conj() and exp() functions to kernel toolbox

• Changed name because of the clash with another Tigger.

2.6.21 0.1.0 (12 Sep 2012)

• Lots of changes in the API

• Added elementwise, reduction and transposition computations

• Extended API reference and added topical guides

2.6.22 0.0.1 (22 Jul 2012)

• Created basic core for computations and transformations

• Added matrix multiplication computation

• Created basic documentation
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