
reikna Documentation
Release 0.7.1

Bogdan Opanchuk

Aug 14, 2018

Contents

1 Community resources 3

2 Contents 5
2.1 Introduction . 5
2.2 Tutorial: modules and snippets . 9
2.3 Tutorial: basics . 13
2.4 Tutorial: advanced topics . 15
2.5 API reference . 18
2.6 Release history . 47

3 Indices and tables 57

Python Module Index 59

i

ii

reikna Documentation, Release 0.7.1

Reikna is a library containing various GPU algorithms built on top of PyCUDA and PyOpenCL. The main design
goals are:

• separation of computation cores (matrix multiplication, random numbers generation etc) from simple transfor-
mations on their input and output values (scaling, typecast etc);

• separation of the preparation and execution stage, maximizing the performance of the execution stage at the
expense of the preparation stage (in other words, aiming at large simulations)

• partial abstraction from CUDA/OpenCL

The installation is as simple as

$ pip install reikna

Contents 1

http://documen.tician.de/pycuda
http://documen.tician.de/pyopencl

reikna Documentation, Release 0.7.1

2 Contents

CHAPTER 1

Community resources

• Source repository on GitHub;

• Issue tracker, ibid.;

• Discussion forum on Google Groups.

3

http://github.com/fjarri/reikna
http://github.com/fjarri/reikna/issues
https://groups.google.com/d/forum/reikna

reikna Documentation, Release 0.7.1

4 Chapter 1. Community resources

CHAPTER 2

Contents

2.1 Introduction

This section contains a brief illustration of what reikna does. For more details see basic and advanced tutorials.

2.1.1 CLUDA

CLUDA is an abstraction layer on top of PyCUDA/PyOpenCL. Its main purpose is to separate the rest of reikna
from the difference in their APIs, but it can be used by itself too for some simple tasks.

Consider the following example, which is very similar to the one from the index page on PyCUDA documentation:

import numpy
import reikna.cluda as cluda

N = 256

api = cluda.ocl_api()
thr = api.Thread.create()

program = thr.compile("""
KERNEL void multiply_them(

GLOBAL_MEM float *dest,
GLOBAL_MEM float *a,
GLOBAL_MEM float *b)

{
const SIZE_T i = get_local_id(0);
dest[i] = a[i] * b[i];

}
""")

multiply_them = program.multiply_them

(continues on next page)

5

reikna Documentation, Release 0.7.1

(continued from previous page)

a = numpy.random.randn(N).astype(numpy.float32)
b = numpy.random.randn(N).astype(numpy.float32)
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
dest_dev = thr.empty_like(a_dev)

multiply_them(dest_dev, a_dev, b_dev, local_size=N, global_size=N)
print((dest_dev.get() - a * b == 0).all())

If you are familiar with PyCUDA or PyOpenCL, you will easily understand all the steps we have made here.
The cluda.ocl_api() call is the only place where OpenCL is mentioned, and if you replace it with cluda.
cuda_api() it will be enough to make the code use CUDA. The abstraction is achieved by using generic API
module on the Python side, and special macros (KERNEL, GLOBAL_MEM , and others) on the kernel side.

The argument of compile() method can also be a template, which is quite useful for metaprogramming, and also
used to compensate for the lack of complex number operations in CUDA and OpenCL. Let us illustrate both scenarios
by making the initial example multiply complex arrays. The template engine of choice in reikna is Mako, and
you are encouraged to read about it as it is quite useful. For the purpose of this example all we need to know is that
${python_expression()} is a synthax construction which renders the expression result.

import numpy
from numpy.linalg import norm

from reikna import cluda
from reikna.cluda import functions, dtypes

N = 256
dtype = numpy.complex64

api = cluda.ocl_api()
thr = api.Thread.create()

program = thr.compile("""
KERNEL void multiply_them(

GLOBAL_MEM ${ctype} *dest,
GLOBAL_MEM ${ctype} *a,
GLOBAL_MEM ${ctype} *b)

{
const SIZE_T i = get_local_id(0);
dest[i] = ${mul}(a[i], b[i]);

}
""", render_kwds=dict(

ctype=dtypes.ctype(dtype),
mul=functions.mul(dtype, dtype)))

multiply_them = program.multiply_them

r1 = numpy.random.randn(N).astype(numpy.float32)
r2 = numpy.random.randn(N).astype(numpy.float32)
a = r1 + 1j * r2
b = r1 - 1j * r2
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
dest_dev = thr.empty_like(a_dev)

multiply_them(dest_dev, a_dev, b_dev, local_size=N, global_size=N)
print(norm(dest_dev.get() - a * b) / norm(a * b) <= 1e-6)

6 Chapter 2. Contents

http://www.makotemplates.org

reikna Documentation, Release 0.7.1

Note that CLUDA Thread is created by means of a static method and not using the constructor. The constructor
is reserved for more probable scenario, where we want to include some reikna functionality in a larger program,
and we want it to use the existing context and stream/queue (see the Thread constructor). In this case all further
operations with the thread will be performed using the objects provided.

Here we have passed two values to the template: ctype (a string with C type name), and mul which is a Module
object containing a single multiplication function. The object is created by a function mul() which takes data types
being multiplied and returns a module that was parametrized accordingly. Inside the template the variable mul is
essentially the prefix for all the global C objects (functions, structures, macros etc) from the module. If there is only
one public object in the module (which is recommended), it is a common practice to give it the name consisting just
of the prefix, so that it could be called easily from the parent code.

For more information on modules, see Tutorial: modules and snippets; the complete list of things available in CLUDA
can be found in CLUDA reference.

2.1.2 Computations

Now it’s time for the main part of the functionality. reikna provides GPGPU algorithms in the form of
Computation-based cores and Transformation-based plug-ins. Computations contain the algorithm itself;
examples are matrix multiplication, reduction, sorting and so on. Transformations are parallel operations on inputs or
outputs of computations, used for scaling, typecast and other auxiliary purposes. Transformations are compiled into
the main computation kernel and are therefore quite cheap in terms of performance.

As an example, we will consider the matrix multiplication.

import numpy
from numpy.linalg import norm
import reikna.cluda as cluda
from reikna.linalg import MatrixMul

api = cluda.ocl_api()
thr = api.Thread.create()

shape1 = (100, 200)
shape2 = (200, 100)

a = numpy.random.randn(*shape1).astype(numpy.float32)
b = numpy.random.randn(*shape2).astype(numpy.float32)
a_dev = thr.to_device(a)
b_dev = thr.to_device(b)
res_dev = thr.array((shape1[0], shape2[1]), dtype=numpy.float32)

dot = MatrixMul(a_dev, b_dev, out_arr=res_dev)
dotc = dot.compile(thr)
dotc(res_dev, a_dev, b_dev)

res_reference = numpy.dot(a, b)

print(norm(res_dev.get() - res_reference) / norm(res_reference) < 1e-6)

Most of the code above should be already familiar, with the exception of the creation of MatrixMul object. The
computation constructor takes two array-like objects, representing arrays that will participate in the computation. After
that the computation object has to be compiled. The compile() method requires a Thread object, which serves as
a source of data about the target API and device, and provides an execution queue.

2.1. Introduction 7

reikna Documentation, Release 0.7.1

2.1.3 Transformations

Now imagine that you want to multiply complex matrices, but real and imaginary parts of your data are kept in separate
arrays. You could create additional kernels that would join your data into arrays of complex values, but this would re-
quire additional storage and additional calls to GPU. Transformation API allows you to connect these transformations
to the core computation — matrix multiplication — effectively adding the code into the main computation kernel and
changing its signature.

Let us change the previous example and connect transformations to it.

import numpy
from numpy.linalg import norm
import reikna.cluda as cluda
from reikna.core import Type
from reikna.linalg import MatrixMul
from reikna.transformations import combine_complex

api = cluda.ocl_api()
thr = api.Thread.create()

shape1 = (100, 200)
shape2 = (200, 100)

a_re = numpy.random.randn(*shape1).astype(numpy.float32)
a_im = numpy.random.randn(*shape1).astype(numpy.float32)
b_re = numpy.random.randn(*shape2).astype(numpy.float32)
b_im = numpy.random.randn(*shape2).astype(numpy.float32)

arrays = [thr.to_device(x) for x in [a_re, a_im, b_re, b_im]]
a_re_dev, a_im_dev, b_re_dev, b_im_dev = arrays

a_type = Type(numpy.complex64, shape=shape1)
b_type = Type(numpy.complex64, shape=shape2)
res_dev = thr.array((shape1[0], shape2[1]), dtype=numpy.complex64)

dot = MatrixMul(a_type, b_type, out_arr=res_dev)
combine_a = combine_complex(a_type)
combine_b = combine_complex(b_type)

dot.parameter.matrix_a.connect(
combine_a, combine_a.output, a_re=combine_a.real, a_im=combine_a.imag)

dot.parameter.matrix_b.connect(
combine_b, combine_b.output, b_re=combine_b.real, b_im=combine_b.imag)

dotc = dot.compile(thr)

dotc(res_dev, a_re_dev, a_im_dev, b_re_dev, b_im_dev)

res_reference = numpy.dot(a_re + 1j * a_im, b_re + 1j * b_im)

print(norm(res_dev.get() - res_reference) / norm(res_reference) < 1e-6)

We have used a pre-created transformation combine_complex() from reikna.transformations for sim-
plicity; developing a custom transformation is also possible and described in Writing a transformation. From the
documentation we know that it transforms two inputs into one output; therefore we need to attach it to one of the
inputs of dot (identified by its name), and provide names for two new inputs.

Names to attach to are obtained from the documentation for the particular computation; for MatrixMul these are
out, a and b.

8 Chapter 2. Contents

reikna Documentation, Release 0.7.1

In the current example we have attached the transformations to both inputs. Note that the computation has a new
signature now, and the compiled dot object now works with split complex numbers.

2.2 Tutorial: modules and snippets

Modules and snippets are important primitives in CLUDA which are used in the rest of reikna, although mostly
internally. Even if you do not write modules yourself, you will most likely use operations from the functions mod-
ule, or common transformations from the transformations module, which are essentially snippet and module
factories (callables returning Snippet and Module objects). Therefore it helps if you know how they work under
the hood.

2.2.1 Snippets

Snippets are Mako template defs (essentially functions returning rendered text) with the associated dictionary of render
keywords. Some computations which are parametrized by custom code (for example, PureParallel) require this
code to be provided in form of a snippet with a certain call signature. When a snippet is used in a template, the result
is quite straightworward: its template function is called, rendering and returning its contents, just as a normal Mako
def.

Let us demonstrate it with a simple example. Consider the following snippet:

add = Snippet("""
<%def name="add(varname)">
${varname} + ${num}
</%def>
""",
render_kwds=dict(num=1))

Now we can compile a template which uses this snippet:

program = thr.compile("""
KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = ${add('x')};

}
""",
render_kwds=dict(add=add))

As a result, the code that gets compiled is

KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = x + 1;

}

If the snippet is used without parentheses (e.g. ${add}), it is equivalent to calling it without arguments (${add()}).

The root code that gets passed to compile() can be viewed as a snippet with an empty signature.

2.2. Tutorial: modules and snippets 9

reikna Documentation, Release 0.7.1

2.2.2 Modules

Modules are quite similar to snippets in a sense that they are also Mako defs with an associated dictionary of render
keywords. The difference lies in the way they are processed. Consider a module containing a single function:

add = Module("""
<%def name="add(prefix, arg)">
WITHIN_KERNEL int ${prefix}(int x)
{

return x + ${num} + ${arg};
}
</%def>
""",
render_kwds=dict(num=1))

Modules contain complete C entities (function, macros, structures) and get rendered in the root level of the source file.
In order to avoid name clashes, their def gets a string as a first argument, which it has to use to prefix these entities’
names. If the module contains only one entity that is supposed to be used by the parent code, it is a good idea to set its
name to prefix only, to simplify its usage.

Let us now create a kernel that uses this module:

program = thr.compile("""
KERNEL void test(int *arr)
{

const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = ${add(2)}(x);

}
""",
render_kwds=dict(add=add))

Before the compilation render keywords are inspected, and if a module object is encountered, the following things
happen:

1. This object’s render_kwds are inspected recursively and any modules there are rendered in the same way as
described here, producing a source file.

2. The module itself gets assigned a new prefix and its template function is rendered with this prefix as the first
argument, with the positional arguments given following it. The result is attached to the source file.

3. The corresponding value in the current render_kwds is replaced by the newly assigned prefix.

With the code above, the rendered module will produce the code

WITHIN_KERNEL int _module0_(int x)
{

return x + 1 + 2;
}

and the add keyword in the render_kwds gets its value changed to _module0_. Then the main code is rendered
and appended to the previously renderd parts, giving

WITHIN_KERNEL int _module0_(int x)
{

return x + 1;
}

KERNEL void test(int *arr)

(continues on next page)

10 Chapter 2. Contents

reikna Documentation, Release 0.7.1

(continued from previous page)

{
const SIZE_T idx = get_global_id(0);
int a = arr[idx];
arr[idx] = _module0_(x);

}

which is then passed to the compiler. If your module’s template def does not take any arguments except for prefix,
you can call it in the parent template just as ${add} (without empty parentheses).

Warning: Note that add in this case is not a string, it is an object that has __str__() defined. If you want
to concatenate a module prefix with some other string, you have to either call str() explicitly (str(add) +
"abc"), or concatenate it inside a template (${add} abc).

Modules can reference snippets in their render_kwds, which, in turn, can reference other modules. This produces
a tree-like structure with the snippet made from the code passed by user at the root. When it is rendered, it is traversed
depth-first, modules are extracted from it and arranged in a flat list in the order of appearance. Their positions in
render_kwds are replaced by assigned prefixes. This flat list is then rendered, producing a single source file being
fed to the compiler.

Note that if the same module object was used without arguments in several other modules or in the kernel itself, it will
only be rendered once. Therefore one can create a “root” module with the data structure declaration and then use that
structure in other modules without producing type errors on compilation.

2.2.3 Shortcuts

The amount of boilerplate code can be somewhat reduced by using Snippet.create and Module.create
constructors. For the snippet above it would look like:

add = Snippet.create(
lambda varname: "${varname} + ${num}",
render_kwds=dict(num=1))

Note that the lambda here serves only to provide the information about the Mako def’s signature. Therefore it should
return the template code regardless of the actual arguments passed.

If the argument list is created dynamically, you can use template_def() with a normal constructor:

argnames = ['varname']
add = Snippet(

template_def(argnames, "${varname} + ${num}"),
render_kwds=dict(num=1))

Modules have a similar shortcut constructor. The only difference is that by default the resulting template def has one
positional argument called prefix. If you provide your own signature, its first positional argument will receive the
prefix value.

add = Module.create("""
WITHIN_KERNEL int ${prefix}(int x)
{

return x + ${num};
}
""",
render_kwds=dict(num=1))

2.2. Tutorial: modules and snippets 11

reikna Documentation, Release 0.7.1

Of course, both Snippet and Module constructors can take already created Mako defs, which is convenient if you
keep templates in a separate file.

2.2.4 Module and snippet discovery

Sometimes you may want to pass a module or a snippet inside a template as an attribute of a custom object. In order
for CLUDA to be able to discover and process it without modifying your original object, you need to make your
object comply to a discovery protocol. The protocol method takes a processing function and is expected to return a
new object of the same class with the processing function applied to all the attributes that may contain a module or a
snippet. By default, objects of type tuple, list, and dict are discoverable.

For example:

class MyClass:

def __init__(self, coeff, mul_module, div_module):
self.coeff = coeff
self.mul = mul_module
self.div = div_module

def __process_modules__(self, process):
return MyClass(self.coeff, process(self.mul), process(self.div))

2.2.5 Nontrivial example

Modules were introduced to help split big kernels into small reusable pieces which in CUDA or OpenCL program
would be put into different source or header files. For example, a random number generator may be assembled from
a function generating random integers, a function transforming these integers into random numbers with a certain
distribution, and a PureParallel computation calling these functions and saving results to global memory. These
two functions can be extracted into separate modules, so that a user could call them from some custom kernel if he
does not need to store the intermediate results.

Going further with this example, one notices that functions that produce randoms with sophisticated distributions are
often based on simpler distributions. For instance, the commonly used Marsaglia algorithm for generating Gamma-
distributed random numbers requires several uniformly and normally distributed randoms. Normally distributed ran-
doms, in turn, require several uniformly distributed randoms — with the range which differs from the one for uniformly
distributed randoms used by the initial Gamma distribution. Instead of copy-pasting the function or setting its param-
eters dynamically (which in more complicated cases may affect the performance), one just specifies the dependencies
between modules and lets the underlying system handle things.

The final render tree may look like:

Snippet(
PureParallel,
render_kwds = {

base_rng -> Snippet(...)
gamma -> Snippet(

} Gamma,
render_kwds = {
uniform -> Snippet(...)
normal -> Snippet(

} Normal,
) render_kwds = {

uniform -> Snippet(...)

(continues on next page)

12 Chapter 2. Contents

reikna Documentation, Release 0.7.1

(continued from previous page)

}
)

2.3 Tutorial: basics

2.3.1 Usage of computations

All reikna computation classes are derived from the Computation class and therefore share the same API and
behavior. A computation object is an opaque typed function-like object containing all the information necessary to
generate GPU kernels that implement some algorithm, along with necessary internal temporary and persistent memory
buffers. Before use it needs to be compiled by calling compile() for a given Thread (thus using its associated
device and queue). This method returns a ComputationCallable object which takes GPU arrays and scalar
parameters and calls its internal kernels.

2.3.2 Computations and transformations

One often needs to perform some simple processing of the input or output values of a computation. This can be
scaling, splitting complex values into components, padding, and so on. Some of these operations require additional
memory to store intermediate results, and all of them involve additional overhead of calling the kernel, and passing
values to and from the device memory. Reikna porvides an API to define such transformations and attach them to
“core” computations, effectively compiling the transformation code into the main kernel(s), thus avoiding all these
drawbacks.

2.3.3 Transformation tree

Before talking about transformations themselves, we need to take a closer look at the computation signatures. Every
Computation object has a signature attribute containing funcsigs.Signature object. It is the same sig-
nature object as can be exctracted from any Python function using funcsigs.signature function (or inspect.
signature from the standard library for Python >= 3.3). When the computation object is compiled, the resulting
callable will have this exact signature.

The base signature for any computation can be found in its documentation (and, sometimes, can depend on the argu-
ments passed to its constructor — see, for example, PureParallel). The signature can change if a user connects
transformations to some parameter via connect(); in this case the signature attribute will change accordingly.

All attached transformations form a tree with roots being the base parameters computation has right after creation, and
leaves forming the user-visible signature, which the compiled ComputationCallable will have.

As an example, let us consider a pure parallel computation object with one output, two inputs and a scalar parameter,
which performs the calculation out = in1 + in2 + param:

from __future__ import print_function
import numpy

from reikna import cluda
from reikna.cluda import Snippet
from reikna.core import Transformation, Type, Annotation, Parameter
from reikna.algorithms import PureParallel
import reikna.transformations as transformations

(continues on next page)

2.3. Tutorial: basics 13

reikna Documentation, Release 0.7.1

(continued from previous page)

arr_t = Type(numpy.float32, shape=128)
carr_t = Type(numpy.complex64, shape=128)

comp = PureParallel(
[Parameter('out', Annotation(carr_t, 'o')),
Parameter('in1', Annotation(carr_t, 'i')),
Parameter('in2', Annotation(carr_t, 'i')),
Parameter('param', Annotation(numpy.float32))],
"""
VSIZE_T idx = ${idxs[0]};
${out.store_idx}(

idx, ${in1.load_idx}(idx) + ${in2.load_idx}(idx) + ${param});
""")

The details of creating the computation itself are not important for this example; they are provided here just for the
sake of completeness. The initial transformation tree of comp object looks like:

| out | >>
>> | in1 |
>> | in2 |
>> | param |

Here the insides of || are the base computation (the one defined by the developer), and >> denote inputs and outputs
provided by the user. The computation signature is:

>>> for param in comp.signature.parameters.values():
... print(param.name + ":" + repr(param.annotation))
out:Annotation(Type(complex64, shape=(128,), strides=(8,)), role='o')
in1:Annotation(Type(complex64, shape=(128,), strides=(8,)), role='i')
in2:Annotation(Type(complex64, shape=(128,), strides=(8,)), role='i')
param:Annotation(float32)

Now let us attach the transformation to the output which will split it into two halves: out1 = out / 2, out2 =
out / 2:

tr = transformations.split_complex(comp.parameter.out)
comp.parameter.out.connect(tr, tr.input, out1=tr.real, out2=tr.imag)

We have used the pre-created transformation here for simplicity; writing custom transformations is described in Writ-
ing a transformation.

In addition, we want in2 to be scaled before being passed to the main computation. To achieve this, we connect the
scaling transformation to it:

tr = transformations.mul_param(comp.parameter.in2, numpy.float32)
comp.parameter.in2.connect(tr, tr.output, in2_prime=tr.input, param2=tr.param)

The transformation tree now looks like:

| out | ----> out1 >>
| | \-> out2 >>

>> | in1 |
>> in2_prime ------> | in2 |
>> param2 ----/ | |

| param |

14 Chapter 2. Contents

reikna Documentation, Release 0.7.1

As can be seen, nothing has changed from the base computation’s point of view: it still gets the same inputs and
outputs to the same array. But user-supplied parameters (>>) have changed, which can be also seen in the value of the
signature:

>>> for param in comp.signature.parameters.values():
... print(param.name + ":" + repr(param.annotation))
out1:Annotation(Type(float32, shape=(128,), strides=(4,)), role='o')
out2:Annotation(Type(float32, shape=(128,), strides=(4,)), role='o')
in1:Annotation(Type(complex64, shape=(128,), strides=(8,)), role='i')
in2_prime:Annotation(Type(complex64, shape=(128,), strides=(8,)), role='i')
param2:Annotation(float32)
param:Annotation(float32)

Notice that the order of the final signature is obtained by traversing the transformation tree depth-first, starting from
the base parameters. For more details see the note in the documentation for connect().

The resulting computation returns the value in1 + (in2_prime * param2) + param split in half. In order
to run it, we have to compile it first. When prepare_for is called, the data types and shapes of the given arguments
will be propagated to the roots and used to prepare the original computation.

api = cluda.ocl_api()
thr = api.Thread.create()

in1_t = comp.parameter.in1
in2p_t = comp.parameter.in2_prime

out1 = thr.empty_like(comp.parameter.out1)
out2 = thr.empty_like(comp.parameter.out2)
in1 = thr.to_device(numpy.ones(in1_t.shape, in1_t.dtype))
in2_prime = thr.to_device(numpy.ones(in2p_t.shape, in2p_t.dtype))

c_comp = comp.compile(thr)
c_comp(out1, out2, in1, in2_prime, 4, 3)

2.3.4 Transformation restrictions

There are some limitations of the transformation mechanics:

1. Transformations are purely parallel, that is they cannot use local memory. In fact, they are very much like
PureParallel computations, except that the indices they use are defined by the main computation, and not
set by the GPU driver.

2. External endpoints of the output transformations cannot point to existing nodes in the transformation tree. This
is the direct consequence of the first limitation — it would unavoidably create races between memory writes
from different branches. On the other hand, input transformations can be safely connected to existing nodes,
including base nodes (although note that inputs are not cached; so even if you load twice from the same index
of the same input node, the global memory will be queried twice).

2.4 Tutorial: advanced topics

This tutorial goes into more detail about the internals of computations and transformations, describing how to write
them.

2.4. Tutorial: advanced topics 15

reikna Documentation, Release 0.7.1

2.4.1 Mako basics

Reikna uses Mako extensively as a templating engine for transformations and computations. For the purpose of this
tutorial you only need to know several things about the synthax:

• Most of Mako synthax is plain Python, with the set of global variables specified externally by the code doing
the template rendering

• ${expr} evaluates Python expression expr, calls str() on the result and puts it into the text

• a pair of <% and %> executes Python code inside, which may introduce some local variables

• a pair of <%def name="func(a, b)"> and </%def> defines a template function, which actually be-
comes a Python function which can be called as func(a, b) from the other part of the template and returns
a rendered string

2.4.2 Writing a transformation

Some common transformations are already available from transformations module. But you can create a
custom one if you need to. Transformations are based on the class Transformation, and are very similar to
PureParallel instances, with some additional limitations.

Let us consider a (not very useful, but quite involved) example:

tr = Transformation(
[

Parameter('out1', Annotation(Type(numpy.float32, shape=100), 'o')),
Parameter('out2', Annotation(Type(numpy.float32, shape=80), 'o')),
Parameter('in1', Annotation(Type(numpy.float32, shape=100), 'i')),
Parameter('in2', Annotation(Type(numpy.float32, shape=100), 'i')),
Parameter('param', Annotation(Type(numpy.float32))),

],
"""
VSIZE_T idx = ${idxs[0]};
float i1 = ${in1.load_same};
float i2 = ${in2.load_idx}(100 - idx) * ${param};
${out1.store_same}(i1);
if (idx < 80)

${out2.store_same}(i2);
""",
connectors=['in1', 'out1'])

Connectors. A transformation gets activated when the main computation attempts to load some value from some index
in global memory, or store one to some index. This index is passed to the transformation attached to the corresponding
parameter, and used to invoke loads/stores either without changes (to perform strictly elementwise operations), or,
possibly, with some changes (as the example illustrates).

If some parameter is only queried once, and only using load_same or store_same, it is called a connector, which
means that it can be used to attach the transformation to a computation. Currently connectors cannot be detected
automatically, so it is the responsibility of the user to provide a list of them to the constructor. By default all parameters
are considered to be connectors.

Shape changing. Parameters in transformations are typed, and it is possible to change data type or shape of a parameter
the transformation is attached to. In our example out2 has length 80, so the current index is checked before the output
to make sure there is no out of bounds access.

Parameter objects. The transformation example above has some hardcoded stuff, for example the type of parameters
(float), or their shapes (100 and 80). These can be accessed from argument objects out1, in1 etc; they all have

16 Chapter 2. Contents

http://makotemplates.org

reikna Documentation, Release 0.7.1

the type KernelParameter. In addition, the transformation code gets an Indices object with the name idxs,
which allows one to manipulate index names directly.

2.4.3 Writing a computation

A computation must derive Computation. As an example, let us create a computation which calculates output
= input1 + input2 * param.

Defining a class:

import numpy

from reikna.helpers import *
from reikna.core import *

class TestComputation(Computation):

Each computation class has to define the constructor, and the plan building callback.

Constructor. Computation constructor takes a list of computation parameters, which the deriving class constructor
has to create according to arguments passed to it. You will often need Type objects, which can be extracted from ar-
rays, scalars or other Type objects with the help of from_value() (or they can be passed straight to Annotation)
which does the same thing.

def __init__(self, arr, coeff):
assert len(arr.shape) == 1
Computation.__init__(self, [

Parameter('output', Annotation(arr, 'o')),
Parameter('input1', Annotation(arr, 'i')),
Parameter('input2', Annotation(arr, 'i')),
Parameter('param', Annotation(coeff))])

In addition to that, the constructor can create some internal state which will be used by the plan builder.

Plan builder. The second method is called when the computation is being compiled, and has to fill and return the
computation plan — a sequence of kernel calls, plus maybe some temporary or persistent internal allocations its
kernels use. In addition, the plan can include calls to nested computations.

The method takes two predefined positional parameters, plus KernelArgument objects corresponding to computa-
tion parameters. The plan_factory is a callable that creates a new ComputationPlan object (in some cases
you may want to recreate the plan, for example, if the workgroup size you were using turned out to be too big), and
device_params is a DeviceParameters object, which is used to optimize the computation for the specific
device. The method must return a filled ComputationPlan object.

For our example we only need one action, which is the execution of an elementwise kernel:

def _build_plan(self, plan_factory, device_params, output, input1, input2, param):
plan = plan_factory()

template = template_from(
"""
<%def name='testcomp(kernel_declaration, k_output, k_input1, k_input2, k_

→˓param)'>
${kernel_declaration}
{

VIRTUAL_SKIP_THREADS;
const VSIZE_T idx = virtual_global_id(0);

(continues on next page)

2.4. Tutorial: advanced topics 17

reikna Documentation, Release 0.7.1

(continued from previous page)

${k_output.ctype} result =
${k_input1.load_idx}(idx) +
${mul}(${k_input2.load_idx}(idx), ${k_param});

${k_output.store_idx}(idx, result);
}
</%def>
""")

plan.kernel_call(
template.get_def('testcomp'),
[output, input1, input2, param],
global_size=output.shape,
render_kwds=dict(mul=functions.mul(input2.dtype, param.dtype)))

return plan

Every kernel call is based on the separate Mako template def. The template can be specified as a string using
template_def(), or loaded as a separate file. Usual pattern in this case is to call the template file same as the
file where the computation class is defined (for example, testcomp.mako for testcomp.py), and store it in
some variable on module load using template_for() as TEMPLATE = template_for(__file__).

The template function should take the same number of positional arguments as the kernel plus one; you can view
<%def ... > part as an actual kernel definition, but with the arguments being KernelParameter objects con-
taining parameter metadata. The first argument will contain the string with the kernel declaration.

Also, depending on whether the corresponding argument is an output array, an input array or a scalar parameter, the
object can be used as ${obj.store_idx}(index, val), ${obj.load_idx}(index) or ${obj}. This
will produce the corresponding request to the global memory or kernel arguments.

If you need additional device functions, they have to be specified between <%def ... > and
${kernel_declaration}. Obviously, these functions can still use dtype and ctype object properties,
although store_idx and load_idx will most likely result in compilation error (since they are rendered as macros
using main kernel arguments).

Since kernel call parameters (global_size and local_size) are specified on creation, all kernel calls are ren-
dered as CLUDA static kernels (see compile_static()) and therefore can use all the corresponding macros and
functions (like virtual_global_flat_id() in our kernel). Also, they must have VIRTUAL_SKIP_THREADS
at the beginning of the kernel which remainder threads (which can be present, for example, if the workgroup size is
not a multiple of the global size).

2.5 API reference

2.5.1 Version queries

This module contains information about the library version.

reikna.version.version
A tuple with version numbers, major components first.

reikna.version.full_version
A string fully identifying the current build.

reikna.version.git_revision
A string with Git SHA identifying the revision used to create this build.

18 Chapter 2. Contents

reikna Documentation, Release 0.7.1

reikna.version.release
A boolean variable, equals True if current version is a release version.

2.5.2 Helpers

This module contains various auxiliary functions which are used throughout the library.

reikna.helpers.bounding_power_of_2(num)
Returns the minimal number of the form 2**m such that it is greater or equal to n.

reikna.helpers.default_strides(shape, itemsize)
Return the default strides (corresponding to a contiguous array) for an array of shape shape and elements of
size itemsize bytes.

reikna.helpers.factors(num, limit=None)
Returns the list of pairs (factor, num/factor) for all factors of num (including 1 and num), sorted by
factor. If limit is set, only pairs with factor <= limit are returned.

class reikna.helpers.ignore_integer_overflow
Context manager for ignoring integer overflow in numpy operations on scalars (not ignored by default because
of a bug in numpy).

reikna.helpers.log2(num)
Integer-valued logarigthm with base 2. If n is not a power of 2, the result is rounded to the smallest number.

reikna.helpers.make_axes_innermost(ndim, axes)
Given the total number of array axes and a list of axes in this range, produce a transposition plan (suitable
e.g. for numpy.transpose()) that will move make the given axes innermost (in the order they’re given).
Returns the transposition plan, and the plan to transpose the resulting array back to the original axes order.

reikna.helpers.min_blocks(length, block)
Returns minimum number of blocks with length block necessary to cover the array with length length.

reikna.helpers.min_buffer_size(shape, itemsize, strides=None, offset=0)
Return the minimum memory buffer size (in bytes) that can fit an array with given parameters, starting at an
offset bytes from the beginning of the buffer.

reikna.helpers.normalize_axes(ndim, axes)
Transform an iterable of array axes (which can be negative) or a single axis into a tuple of non-negative axes.

reikna.helpers.padded_buffer_parameters(shape, itemsize, pad=0)
For an array of shape shape, padded from all sizes with pad elements, return a tuple of (strides, offset, size
(in bytes) of the required memory buffer), which would have to be requested when allocating such an array.

reikna.helpers.product(seq)
Returns the product of elements in the iterable seq.

reikna.helpers.template_def(signature, code)
Returns a Mako template with the given signature.

Parameters signature – a list of postitional argument names, or a Signature object from
funcsigs module.

Code a body of the template.

reikna.helpers.template_for(filename)
Returns the Mako template object created from the file which has the same name as filename and the exten-
sion .mako. Typically used in computation modules as template_for(__filename__).

2.5. API reference 19

reikna Documentation, Release 0.7.1

reikna.helpers.template_from(template)
Creates a Mako template object from a given string. If template already has render() method, does
nothing.

reikna.helpers.wrap_in_tuple(seq_or_elem)
If seq_or_elem is a sequence, converts it to a tuple, otherwise returns a tuple with a single element
seq_or_elem.

2.5.3 CLUDA layer

CLUDA is the foundation of reikna. It provides the unified access to basic features of CUDA and OpenCL, such as
memory operations, compilation and so on. It can also be used by itself, if you want to write GPU API-independent
programs and happen to only need a small subset of GPU API. The terminology is borrowed from OpenCL, since it
is a more general API.

class reikna.cluda.Module(template_src, render_kwds=None)
Contains a CLUDA module. See Tutorial: modules and snippets for details.

Parameters

• template_src (str or Mako template.) – a Mako template with the module code, or a
string with the template source.

• render_kwds – a dictionary which will be used to render the template. Can contain other
modules and snippets.

classmethod create(func_or_str, render_kwds=None)
Creates a module from the Mako def:

• if func_or_str is a function, then the def has the same signature as func_or_str (prefix will
be passed as the first positional parameter), and the body equal to the string it returns;

• if func_or_str is a string, then the def has a single positional argument prefix. and the body
code.

exception reikna.cluda.OutOfResourcesError
Thrown by compile_static() if the provided local_size is too big, or one cannot be found.

class reikna.cluda.Snippet(template_src, render_kwds=None)
Contains a CLUDA snippet. See Tutorial: modules and snippets for details.

Parameters

• template_src (str or Mako template.) – a Mako template with the module code, or a
string with the template source.

• render_kwds – a dictionary which will be used to render the template. Can contain other
modules and snippets.

classmethod create(func_or_str, render_kwds=None)
Creates a snippet from the Mako def:

• if func_or_str is a function, then the def has the same signature as func_or_str, and the body
equal to the string it returns;

• if func_or_str is a string, then the def has empty signature.

reikna.cluda.any_api()
Returns one of the API modules supported by the system or raises an Exception if there are not any.

reikna.cluda.api_ids()
Returns a list of identifiers for all known (not necessarily available for the current system) APIs.

20 Chapter 2. Contents

reikna Documentation, Release 0.7.1

reikna.cluda.cuda_api()
Returns the PyCUDA-based API module.

reikna.cluda.cuda_id()
Returns the identifier of the PyCUDA-based API.

reikna.cluda.find_devices(api, include_devices=None, exclude_devices=None, in-
clude_platforms=None, exclude_platforms=None, in-
clude_duplicate_devices=True, include_pure_only=False)

Find platforms and devices meeting certain criteria.

Parameters

• api – a CLUDA API object.

• include_devices – a list of masks for a device name which will be used to pick devices
to include in the result.

• exclude_devices – a list of masks for a device name which will be used to pick devices
to exclude from the result.

• include_platforms – a list of masks for a platform name which will be used to pick
platforms to include in the result.

• exclude_platforms – a list of masks for a platform name which will be used to pick
platforms to exclude in the result.

• include_duplicate_devices – if False, will only include a single device from
the several with the same name available on a platform.

• include_pure_only – if True, will include devices with maximum group size equal
to 1.

Returns a dictionary with found platform numbers as keys, and lists of device numbers as values.

reikna.cluda.get_api(api_id)
Returns an API module with the generalized interface reikna.cluda.api for the given identifier.

reikna.cluda.ocl_api()
Returns the PyOpenCL-based API module.

reikna.cluda.ocl_id()
Returns the identifier of the PyOpenCL-based API.

reikna.cluda.supported_api_ids()
Returns a list of identifiers of supported APIs.

reikna.cluda.supports_api(api_id)
Returns True if given API is supported.

API module

Modules for all APIs have the same generalized interface. It is referred here (and references from other parts of this
documentation) as reikna.cluda.api.

class reikna.cluda.api.Buffer
Low-level untyped memory allocation. Actual class depends on the API: pycuda.driver.
DeviceAllocation for CUDA and pyopencl.Buffer for OpenCL.

size

2.5. API reference 21

reikna Documentation, Release 0.7.1

class reikna.cluda.api.Array
A superclass of the corresponding API’s native array (pycuda.gpuarray.GPUArray for CUDA and
pyopencl.array.Array for OpenCL), with some additional functionality.

shape

dtype

strides

offset
The start of the array data in the memory buffer (in bytes).

base_data
The memory buffer where the array is located.

nbytes
The total size of the array data plus the offset (in bytes).

get()
Returns numpy.ndarray with the contents of the array. Synchronizes the parent Thread.

thread
The Thread object for which the array was created.

class reikna.cluda.api.DeviceParameters(device)
An assembly of device parameters necessary for optimizations.

api_id
Identifier of the API this device belongs to.

max_work_group_size
Maximum block size for kernels.

max_work_item_sizes
List with maximum local_size for each dimension.

max_num_groups
List with maximum number of workgroups for each dimension.

warp_size
Warp size (nVidia), or wavefront size (AMD), or SIMD width is supposed to be the number of threads
that are executed simultaneously on the same computation unit (so you can assume that they are perfectly
synchronized).

local_mem_banks
Number of local (shared in CUDA) memory banks is a number of successive 32-bit words you can access
without getting bank conflicts.

local_mem_size
Size of the local (shared in CUDA) memory per workgroup, in bytes.

min_mem_coalesce_width
Dictionary {word_size:elements}, where elements is the number of elements with size
word_size in global memory that allow coalesced access.

supports_dtype(self, dtype)
Checks if given numpy dtype can be used in kernels compiled using this thread.

class reikna.cluda.api.Platform
A vendor-specific implementation of the GPGPU API.

name
Platform name.

22 Chapter 2. Contents

reikna Documentation, Release 0.7.1

vendor
Vendor name.

version
Platform version.

get_devices()
Returns a list of device objects available in the platform.

class reikna.cluda.api.Kernel(thr, program, name, static=False)
An object containing GPU kernel.

max_work_group_size
Maximum size of the work group for the kernel.

__call__(*args, **kwds)
A shortcut for successive call to prepare() and prepared_call(). In case of the OpenCL backend,
returns a pyopencl.Event object.

prepare(global_size, local_size=None, local_mem=0)
Prepare the kernel for execution with given parameters.

Parameters

• global_size – an integer or a tuple of integers, specifying total number of work items
to run.

• local_size – an integer or a tuple of integers, specifying the size of a single work
group. Should have the same number of dimensions as global_size. If None is
passed, some local_size will be picked internally.

• local_mem – (CUDA API only) amount of dynamic local memory (in bytes)

prepared_call(*args)
Execute the kernel. Array objects are allowed as arguments. In case of the OpenCL backend, returns a
pyopencl.Event object.

set_constant(name, arr)
Load a constant array (arr can be either numpy array or a Array object) corresponding to the symbol
name to device. Note that all the kernels belonging to the same Program object share constant arrays.

class reikna.cluda.api.Program(thr, src, static=False, fast_math=False, com-
piler_options=None, constant_arrays=None, keep=False)

An object with compiled GPU code.

source
Contains module source code.

kernel_name
Contains Kernel object for the kernel kernel_name.

set_constant(name, arr)
Load a constant array (arr can be either numpy array or a Array object) corresponding to the symbol
name to device.

class reikna.cluda.api.StaticKernel(thr, template_src, name, global_size, lo-
cal_size=None, render_args=None, render_kwds=None,
fast_math=False, compiler_options=None, con-
stant_arrays=None, keep=False)

An object containing a GPU kernel with fixed call sizes.

source
Contains the source code of the program.

2.5. API reference 23

reikna Documentation, Release 0.7.1

__call__(*args)
Execute the kernel. Array objects are allowed as arguments. In case of the OpenCL backend, returns a
pyopencl.Event object.

set_constant(name, arr)
Load a constant array (arr can be either numpy array or a Array object) corresponding to the symbol
name to device.

class reikna.cluda.api.Thread(cqd, async_=True, temp_alloc=None)
Wraps an existing context in the CLUDA thread object.

Parameters

• cqd – a Context, Device or Stream/CommandQueue object to base on. If a context
is passed, a new stream/queue will be created internally.

• async – whether to execute all operations with this thread asynchronously (you would
generally want to set it to False only for profiling purposes).

Note: If you are using CUDA API, you must keep in mind the stateful nature of CUDA calls. Briefly, this means
that there is the context stack, and the current context on top of it. When the create() is called, the PyCUDA
context gets pushed to the stack and made current. When the thread object goes out of scope (and the thread
object owns it), the context is popped, and it is the user’s responsibility to make sure the popped context is the
correct one. In simple single-context programs this only means that one should avoid reference cycles involving
the thread object.

Warning: Do not pass one Stream/CommandQueue object to several Thread objects.

api
Module object representing the CLUDA API corresponding to this Thread.

device_params
Instance of DeviceParameters class for this thread’s device.

temp_alloc
Instance of TemporaryManager which handles allocations of temporary arrays (see
temp_array()).

allocate(size)
Creates an untyped memory allocation object of type Buffer with size size.

array(shape, dtype, strides=None, offset=0, nbytes=None, base=None, base_data=None, alloca-
tor=None)

Creates an Array on GPU with given shape, dtype, strides and offset.

If nbytes is None, the size of the allocated memory buffer is chosen to be the minimum one to fit all
the elements of the array, based on shape, dtype and strides (if provided). If offset is not 0, an
additional offset bytes is added at the beginning of the buffer.

Note: Reikna computations (including the template functions load_idx(), store_idx() etc), high-
level PyCUDA/PyOpenCL functions and PyCUDA kernels take offset into account automatically and
address arrays starting from the position of the actual data. Reikna kernels (created with compile() and
compile_static()) and PyOpenCL kernels receive base addresses of arrays, and thus have to add
offsets manually.

24 Chapter 2. Contents

reikna Documentation, Release 0.7.1

If base, base_data and nbytes are None, the total allocated size will be the minimum size required
for the array data (based on shape and strides) plus offset.

If base and base_data are None, but nbytes is not, nbytes bytes will be allocated for the array
(this includes the offset).

If base_data (a memory buffer) is not None, it will be used as the underlying buffer for the array, with
the actual data starting at the offset bytes from the beginning of base_data. No size checking to
make sure the array and the offset fit it will be performed.

If base (an Array object) is not None, its buffer is used as the underlying buffer for the array, with the
actual data starting at the offset bytes from the beginning of base.base_data. base_data will
be ignored.

Optionally, an allocator is a callable returning any object castable to int representing the physical
address on the device (for instance, Buffer).

compile(template_src, render_args=None, render_kwds=None, fast_math=False, com-
piler_options=None, constant_arrays=None, keep=False)

Creates a module object from the given template.

Parameters

• template_src – Mako template source to render

• render_args – an iterable with positional arguments to pass to the template.

• render_kwds – a dictionary with keyword parameters to pass to the template.

• fast_math – whether to enable fast mathematical operations during compilation.

• compiler_options – a list of strings to be passed to the compiler as arguments.

• constant_arrays – (CUDA only) a dictionary {name: metadata} of constant
memory arrays to be declared in the compiled program. metadata can be either an array-
like object (possessing shape and dtype attributes), or a pair (shape, dtype).

• keep – if True, preserve the source file being compiled and the accompanying bina-
ries (if any). With PyCUDA backend, it is used as the keep option when creating
SourceModule. With PyOpenCL backend, it is used as the cache_dir option for
Program.build() (and, additionally, the kernel source itself is put there).

Returns a Program object.

compile_static(template_src, name, global_size, local_size=None, render_args=None,
render_kwds=None, fast_math=False, compiler_options=None, con-
stant_arrays=None, keep=False)

Creates a kernel object with fixed call sizes, which allows to overcome some backend limitations. Global
and local sizes can have any length, providing that len(global_size) >= len(local_size),
and the total number of work items and work groups is less than the corresponding total number available
for the device. In order to get IDs and sizes in such kernels, virtual size functions have to be used (see
VIRTUAL_SKIP_THREADS and others for details).

Parameters

• template_src – Mako template or a template source to render

• name – name of the kernel function

• global_size – global size to be used, in row-major order.

• local_size – local size to be used, in row-major order. If None, some suitable one
will be picked.

2.5. API reference 25

reikna Documentation, Release 0.7.1

• local_mem – (CUDA API only) amount of dynamically allocated local memory to be
used (in bytes).

The rest of the keyword parameters are the same as for compile().

Returns a StaticKernel object.

copy_array(arr, dest=None, src_offset=0, dest_offset=0, size=None)
Copies array on device.

Parameters

• dest – the effect is the same as in to_device().

• src_offset – offset (in items of arr.dtype) in the source array.

• dest_offset – offset (in items of arr.dtype) in the destination array.

• size – how many elements of arr.dtype to copy.

classmethod create(interactive=False, device_filters=None, **thread_kwds)
Creates a new Thread object with its own context and queue inside. Intended for cases when you want
to base your whole program on CLUDA.

Parameters

• interactive – ask a user to choose a platform and a device from the ones found. If
there is only one platform/device available, they will be chosen automatically.

• device_filters – keywords to filter devices (see the keywords for
find_devices()).

• thread_kwds – keywords to pass to Thread constructor.

• kwds – same as in Thread.

empty_like(arr)
Allocates an array on GPU with the same attributes (shape, dtype, strides, offset and nbytes)
as arr.

Warning: Note that pycuda.GPUArray objects do not have the offset attribute.

from_device(arr, dest=None, async_=False)
Transfers the contents of arr to a numpy.ndarray object. The effect of dest parameter is the same
as in to_device(). If async_ is True, the transfer is asynchronous (the thread-wide asynchronisity
setting does not apply here).

Alternatively, one can use Array.get().

release()
Forcefully free critical resources (rendering the object unusable). In most cases you can rely on the garbage
collector taking care of things. Calling this method explicitly may be necessary in case of CUDA API when
you want to make sure the context got popped.

synchronize()
Forcefully synchronize this thread with the main program.

temp_array(shape, dtype, strides=None, offset=0, nbytes=None, dependencies=None)
Creates an Array on GPU with given shape, dtype, strides, offset and nbytes (see array()
for details). In order to reduce the memory footprint of the program, the temporary array manager
will allow these arrays to overlap. Two arrays will not overlap, if one of them was specified in

26 Chapter 2. Contents

reikna Documentation, Release 0.7.1

dependencies for the other one. For a list of values dependencies takes, see the reference en-
try for TemporaryManager.

to_device(arr, dest=None)
Copies an array to the device memory. If dest is specified, it is used as the destination, and the method
returns None. Otherwise the destination array is created internally and returned from the method.

reikna.cluda.api.get_id()
Returns the identifier of this API.

reikna.cluda.api.get_platforms()
Returns a list of available Platform objects. In case of OpenCL returned objects are actually instances of
pyopencl.Platform.

Temporary Arrays

Each Thread contains a special allocator for arrays with data that does not have to be persistent all the time. In many
cases you only want some array to keep its contents between several kernel calls. This can be achieved by manually
allocating and deallocating such arrays every time, but it slows the program down, and you have to synchronize the
queue because allocation commands are not serialized. Therefore it is advantageous to use temp_array() method
to get such arrays. It takes a list of dependencies as an optional parameter which gives the allocator a hint about which
arrays should not use the same physical allocation.

class reikna.cluda.tempalloc.TemporaryManager(thr, pack_on_alloc=False,
pack_on_free=False)

Base class for a manager of temporary allocations.

Parameters

• thr – an instance of Thread.

• pack_on_alloc – whether to repack allocations when a new allocation is requested.

• pack_on_free – whether to repack allocations when an allocation is freed.

array(shape, dtype, strides=None, offset=0, nbytes=None, dependencies=None)
Returns a temporary array.

Parameters

• shape – shape of the array.

• dtype – data type of the array.

• strides – tuple of bytes to step in each dimension when traversing an array.

• offset – the array offset (in bytes)

• nbytes – the buffer size for the array (if None, the minimum required size will be used).

• dependencies – can be a Array instance (the ones containing persistent allocations
will be ignored), an iterable with valid values, or an object with the attribute __tempalloc__
which is a valid value (the last two will be processed recursively).

pack()
Packs the real allocations possibly reducing total memory usage. This process can be slow.

class reikna.cluda.tempalloc.TrivialManager(*args, **kwds)
Trivial manager — allocates a separate buffer for each allocation request.

class reikna.cluda.tempalloc.ZeroOffsetManager(*args, **kwds)
Tries to assign several allocation requests to a single real allocation, if dependencies allow that. All virtual
allocations start from the beginning of real allocations.

2.5. API reference 27

reikna Documentation, Release 0.7.1

Function modules

This module contains Module factories which are used to compensate for the lack of complex number operations in
OpenCL, and the lack of C++ synthax which would allow one to write them.

reikna.cluda.functions.add(*in_dtypes, out_dtype=None)
Returns a Module with a function of len(in_dtypes) arguments that adds values of types in_dtypes.
If out_dtype is given, it will be set as a return type for this function.

This is necessary since on some platforms the + operator for a complex and a real number works in an unexpected
way (returning (a.x + b, a.y + b) instead of (a.x + b, a.y)).

reikna.cluda.functions.cast(out_dtype, in_dtype)
Returns a Module with a function of one argument that casts values of in_dtype to out_dtype.

reikna.cluda.functions.conj(dtype)
Returns a Modulewith a function of one argument that conjugates the value of type dtype (must be a complex
data type).

reikna.cluda.functions.div(in_dtype1, in_dtype2, out_dtype=None)
Returns a Module with a function of two arguments that divides values of in_dtype1 and in_dtype2. If
out_dtype is given, it will be set as a return type for this function.

reikna.cluda.functions.exp(dtype)
Returns a Module with a function of one argument that exponentiates the value of type dtype (must be a real
or complex data type).

reikna.cluda.functions.mul(*in_dtypes, out_dtype=None)
Returns a Module with a function of len(in_dtypes) arguments that multiplies values of types
in_dtypes. If out_dtype is given, it will be set as a return type for this function.

reikna.cluda.functions.norm(dtype)
Returns a Module with a function of one argument that returns the 2-norm of the value of type dtype (product
by the complex conjugate if the value is complex, square otherwise).

reikna.cluda.functions.polar(dtype)
Returns a Module with a function of two arguments that returns the complex-valued rho * exp(i *
theta) for values rho, theta of type dtype (must be a real data type).

reikna.cluda.functions.polar_unit(dtype)
Returns a Module with a function of one argument that returns a complex number (cos(theta),
sin(theta)) for a value theta of type dtype (must be a real data type).

reikna.cluda.functions.pow(dtype, exponent_dtype=None, output_dtype=None)
Returns a Module with a function of two arguments that raises the first argument of type dtype to the power
of the second argument of type exponent_dtype (an integer or real data type). If exponent_dtype or
output_dtype are not given, they default to dtype. If dtype is not the same as output_dtype, the
input is cast to output_dtype before exponentiation. If exponent_dtype is real, but both dtype and
output_dtype are integer, a ValueError is raised.

Kernel toolbox

The stuff available for the kernel passed for compilation consists of two parts.

First, there are several objects available at the template rendering stage, namely numpy, reikna.cluda.dtypes
(as dtypes), and reikna.helpers (as helpers).

Second, there is a set of macros attached to any kernel depending on the API it is being compiled for:

28 Chapter 2. Contents

reikna Documentation, Release 0.7.1

CUDA
If defined, specifies that the kernel is being compiled for CUDA API.

COMPILE_FAST_MATH
If defined, specifies that the compilation for this kernel was requested with fast_math == True.

LOCAL_BARRIER
Synchronizes threads inside a block.

WITHIN_KERNEL
Modifier for a device-only function declaration.

KERNEL
Modifier for a kernel function declaration.

GLOBAL_MEM
Modifier for a global memory pointer argument.

LOCAL_MEM
Modifier for a statically allocated local memory variable.

LOCAL_MEM_DYNAMIC
Modifier for a dynamically allocated local memory variable.

LOCAL_MEM_ARG
Modifier for a local memory argument in device-only functions.

CONSTANT_MEM
Modifier for a statically allocated constant memory variable.

CONSTANT_MEM_ARG
Modifier for a constant memory argument in device-only functions.

INLINE
Modifier for inline functions.

SIZE_T
The type of local/global IDs and sizes. Equal to unsigned int for CUDA, and size_t for OpenCL (which
can be 32- or 64-bit unsigned integer, depending on the device).

SIZE_T get_local_id(int dim)

SIZE_T get_group_id(int dim)

SIZE_T get_global_id(int dim)

SIZE_T get_local_size(int dim)

SIZE_T get_num_groups(int dim)

SIZE_T get_global_size(int dim)
Local, group and global identifiers and sizes. In case of CUDA mimic the behavior of corresponding OpenCL
functions.

VSIZE_T
The type of local/global IDs in the virtual grid. It is separate from SIZE_T because the former is intended
to be equivalent to what the backend is using, while VSIZE_T is a separate type and can be made larger than
SIZE_T in the future if necessary.

ALIGN(int)
Used to specify an explicit alignment (in bytes) for fields in structures, as

2.5. API reference 29

reikna Documentation, Release 0.7.1

typedef struct {
char ALIGN(4) a;
int b;

} MY_STRUCT;

VIRTUAL_SKIP_THREADS
This macro should start any kernel compiled with compile_static(). It skips all the empty threads result-
ing from fitting call parameters into backend limitations.

VSIZE_T virtual_local_id(int dim)

VSIZE_T virtual_group_id(int dim)

VSIZE_T virtual_global_id(int dim)

VSIZE_T virtual_local_size(int dim)

VSIZE_T virtual_num_groups(int dim)

VSIZE_T virtual_global_size(int dim)

VSIZE_T virtual_global_flat_id()

VSIZE_T virtual_global_flat_size()
Only available in StaticKernel objects obtained from compile_static(). Since its dimensions can
differ from actual call dimensions, these functions have to be used.

Datatype tools

This module contains various convenience functions which operate with numpy.dtype objects.

reikna.cluda.dtypes.align(dtype)
Returns a new struct dtype with the field offsets changed to the ones a compiler would use (without being given
any explicit alignment qualifiers). Ignores all existing explicit itemsizes and offsets.

reikna.cluda.dtypes.c_constant(val, dtype=None)
Returns a C-style numerical constant. If val has a struct dtype, the generated constant will have the form {
... } and can be used as an initializer for a variable.

reikna.cluda.dtypes.c_path(path)
Returns a string corresponding to the path to a struct element in C. The path is the sequence of field
names/array indices returned from flatten_dtype().

reikna.cluda.dtypes.cast(dtype)
Returns function that takes one argument and casts it to dtype.

reikna.cluda.dtypes.complex_ctr(dtype)
Returns name of the constructor for the given dtype.

reikna.cluda.dtypes.complex_for(dtype)
Returns complex dtype corresponding to given floating point dtype.

reikna.cluda.dtypes.ctype(dtype)
For a built-in C type, returns a string with the name of the type.

reikna.cluda.dtypes.ctype_module(dtype, ignore_alignment=False)
For a struct type, returns a Module object with the typedef of a struct corresponding to the given dtype
(with its name set to the module prefix); falls back to ctype() otherwise.

The structure definition includes the alignment required to produce field offsets specified in dtype; therefore,
dtype must be either a simple type, or have proper offsets and dtypes (the ones that can be reporoduced in

30 Chapter 2. Contents

reikna Documentation, Release 0.7.1

C using explicit alignment attributes, but without additional padding) and the attribute isalignedstruct
== True. An aligned dtype can be produced either by standard means (aligned flag in numpy.dtype
constructor and explicit offsets and itemsizes), or created out of an arbitrary dtype with the help of align().

If ignore_alignment is True, all of the above is ignored. The C structures produced will not have any
explicit alignment modifiers. As a result, the the field offsets of dtype may differ from the ones chosen by the
compiler.

Modules are cached and the function returns a single module instance for equal dtype’s. Therefore inside a
kernel it will be rendered with the same prefix everywhere it is used. This results in a behavior characteristic for
a structural type system, same as for the basic dtype-ctype conversion.

Warning: As of numpy 1.8, the isalignedstruct attribute is not enough to ensure a mapping between
a dtype and a C struct with only the fields that are present in the dtype. Therefore, ctype_module will
make some additional checks and raise ValueError if it is not the case.

reikna.cluda.dtypes.detect_type(val)
Find out the data type of val.

reikna.cluda.dtypes.extract_field(arr, path)
Extracts an element from an array of struct dtype. The path is the sequence of field names/array indices
returned from flatten_dtype().

reikna.cluda.dtypes.flatten_dtype(dtype)
Returns a list of tuples (path, dtype) for each of the basic dtypes in a (possibly nested) dtype. path is
a list of field names/array indices leading to the corresponding element.

reikna.cluda.dtypes.is_complex(dtype)
Returns True if dtype is complex.

reikna.cluda.dtypes.is_double(dtype)
Returns True if dtype is double precision floating point.

reikna.cluda.dtypes.is_integer(dtype)
Returns True if dtype is an integer.

reikna.cluda.dtypes.is_real(dtype)
Returns True if dtype is a real.

reikna.cluda.dtypes.min_scalar_type(val)
Wrapper for numpy.min_scalar_dtype which takes into account types supported by GPUs.

reikna.cluda.dtypes.normalize_type(dtype)
Function for wrapping all dtypes coming from the user. numpy uses two different classes to represent dtypes,
and one of them does not have some important attributes.

reikna.cluda.dtypes.normalize_types(dtypes)
Same as normalize_type(), but operates on a list of dtypes.

reikna.cluda.dtypes.real_for(dtype)
Returns floating point dtype corresponding to given complex dtype.

reikna.cluda.dtypes.result_type(*dtypes)
Wrapper for numpy.result_type which takes into account types supported by GPUs.

reikna.cluda.dtypes.zero_ctr(dtype)
Returns the string with constructed zero value for the given dtype.

2.5. API reference 31

reikna Documentation, Release 0.7.1

2.5.4 Core functionality

Classes necessary to create computations and transformations are exposed from the core module.

Computation signatures

class reikna.core.Type(dtype, shape=None, strides=None, offset=0, nbytes=None)
Represents an array or, as a degenerate case, scalar type of a computation parameter.

shape
A tuple of integers. Scalars are represented by an empty tuple.

dtype
A numpy.dtype instance.

ctype
A string with the name of C type corresponding to dtype, or a module if it is a struct type.

strides
Tuple of bytes to step in each dimension when traversing an array.

offset
The initial offset (in bytes).

nbytes
The total size of the memory buffer (in bytes)

__call__(val)
Casts the given value to this type.

classmethod from_value(val)
Creates a Type object corresponding to the given value.

classmethod padded(dtype, shape, pad=0)
Creates a Type object corresponding to an array padded from all dimensions by pad elements.

class reikna.core.Annotation(type_, role=None, constant=False)
Computation parameter annotation, in the same sense as it is used for functions in the standard library.

Parameters

• type – a Type object.

• role – any of 'i' (input), 'o' (output), 'io' (input/output), 's' (scalar). Defaults to
's' for scalars, 'io' for regular arrays and 'i' for constant arrays.

• constant – if True, corresponds to a constant (cached) array.

class reikna.core.Parameter(name, annotation, default=<class ’funcsigs._empty’>)
Computation parameter, in the same sense as it is used for functions in the standard library. In its terms, all
computation parameters have kind POSITIONAL_OR_KEYWORD.

Parameters

• name – parameter name.

• annotation – an Annotation object.

• default – default value for the parameter, can only be specified for scalars.

rename(new_name)
Creates a new Parameter object with the new name and the same annotation and default value.

32 Chapter 2. Contents

reikna Documentation, Release 0.7.1

class reikna.core.Signature(parameters)
Computation signature, in the same sense as it is used for functions in the standard library.

Parameters parameters – a list of Parameter objects.

parameters
An OrderedDict with Parameter objects indexed by their names.

bind_with_defaults(args, kwds, cast=False)
Binds passed positional and keyword arguments to parameters in the signature and returns the resulting
BoundArguments object.

Core classes

class reikna.core.Computation(root_parameters)
A base class for computations, intended to be subclassed.

Parameters root_parameters – a list of Parameter objects.

signature
A Signature object representing current computation signature (taking into account connected trans-
formations).

parameter
A named tuple of ComputationParameter objects corresponding to parameters from the current
signature.

_build_plan(plan_factory, device_params, *args)
Derived classes override this method. It is called by compile() and supposed to return a
ComputationPlan object.

Parameters

• plan_factory – a callable returning a new ComputationPlan object.

• device_params – a DeviceParameters object corresponding to the thread the
computation is being compiled for.

• args – KernelArgument objects, corresponding to parameters specified during
the creation of this computation object.

_update_attributes()
Updates signature and parameter attributes. Called by the methods that change the signature.

compile(thread, fast_math=False, compiler_options=None, keep=False)
Compiles the computation with the given Thread object and returns a ComputationCallable ob-
ject. If fast_math is enabled, the compilation of all kernels is performed using the compiler options for
fast and imprecise mathematical functions. compiler_options can be used to pass a list of strings as
arguments to the backend compiler. If keep is True, the generated kernels and binaries will be preserved
in temporary directories.

connect(_comp_connector, _trf, _tr_connector, **tr_from_comp)
Connect a transformation to the computation.

Parameters

• _comp_connector – connection target — a ComputationParameter object be-
longing to this computation object, or a string with its name.

• _trf – a Transformation object.

2.5. API reference 33

reikna Documentation, Release 0.7.1

• _tr_connector – connector on the side of the transformation — a
TransformationParameter object belonging to tr, or a string with its name.

• tr_from_comp – a dictionary with the names of new or old computation parameters as
keys, and TransformationParameter objects (or their names) as values. The keys
of tr_from_comp cannot include the name of the connection target.

Returns this computation object (modified).

Note: The resulting parameter order is determined by traversing the graph of connections depth-first
(starting from the initial computation parameters), with the additional condition: the nodes do not change
their order in the same branching level (i.e. in the list of computation or transformation parameters, both
of which are ordered).

For example, consider a computation with parameters (a, b, c, d). If you connect a transformation
(a', c) -> a, the resulting computation will have the signature (a', b, c, d) (as opposed to
(a', c, b, d) it would have for the pure depth-first traversal).

class reikna.core.Transformation(parameters, code, render_kwds=None, connectors=None)
A class containing a pure parallel transformation of arrays. Some restrictions apply:

• it cannot use local memory;

• it cannot use global/local id getters (and depends only on externally passed indices);

• it cannot have 'io' arguments;

• it has at least one argument that uses load_same or store_same, and does it only once.

Parameters

• parameters – a list of Parameter objects.

• code – a source template for the transformation. Will be wrapped in a template def with
positional arguments with the names of objects in parameters.

• render_kwds – a dictionary with render keywords that will be passed to the snippet.

• connectors – a list of parameter names suitable for connection. Defaults to all non-scalar
parameters.

Result and attribute classes

class reikna.core.Indices(shape)
Encapsulates the information about index variables available for the snippet.

__getitem__(dim)
Returns the name of the index varibale for the dimension dim.

all()
Returns the comma-separated list of all index variable names (useful for passing the guiding indices ver-
batim in a load or store call).

class reikna.core.computation.ComputationCallable(thread, parameters, kernel_calls, in-
ternal_args, temp_buffers)

A result of calling compile() on a computation. Represents a callable opaque GPGPU computation.

thread
A Thread object used to compile the computation.

34 Chapter 2. Contents

reikna Documentation, Release 0.7.1

signature
A Signature object.

parameter
A named tuple of Type objects corresponding to the callable’s parameters.

__call__(*args, **kwds)
Execute the computation. In case of the OpenCL backend, returns a list of pyopencl.Event objects
from nested kernel calls.

class reikna.core.computation.ComputationParameter(computation, name, type_)
Bases: Type

Represents a typed computation parameter. Can be used as a substitute of an array for functions which are only
interested in array metadata.

connect(_trf, _tr_connector, **tr_from_comp)
Shortcut for connect() with this parameter as a first argument.

class reikna.core.computation.KernelArgument(name, type_)
Bases: Type

Represents an argument suitable to pass to planned kernel or computation call.

class reikna.core.computation.ComputationPlan(tr_tree, translator, thread, fast_math,
compiler_options, keep)

Computation plan recorder.

computation_call(computation, *args, **kwds)
Adds a nested computation call. The computation value must be a Computation object. args and
kwds are values to be passed to the computation.

constant_array(arr)
Adds a constant GPU array to the plan, and returns the corresponding KernelArgument.

kernel_call(template_def, args, global_size, local_size=None, render_kwds=None, ker-
nel_name=’_kernel_func’)

Adds a kernel call to the plan.

Parameters

• template_def – Mako template def for the kernel.

• args – a list consisting of KernelArgument objects, or scalar values wrapped in
numpy.ndarray, that are going to be passed to the kernel during execution.

• global_size – global size to use for the call, in row-major order.

• local_size – local size to use for the call, in row-major order. If None, the local size
will be picked automatically.

• render_kwds – dictionary with additional values used to render the template.

• kernel_name – the name of the kernel function.

persistent_array(arr)
Adds a persistent GPU array to the plan, and returns the corresponding KernelArgument.

temp_array(shape, dtype, strides=None, offset=0, nbytes=None)
Adds a temporary GPU array to the plan, and returns the corresponding KernelArgument. See
array() for the information about the parameters.

Temporary arrays can share physical memory, but in such a way that their contents is guaranteed to persist
between the first and the last use in a kernel during the execution of the plan.

2.5. API reference 35

reikna Documentation, Release 0.7.1

temp_array_like(arr)
Same as temp_array(), taking the array properties from array or array-like object arr.

Warning: Note that pycuda.GPUArray objects do not have the offset attribute.

class reikna.core.transformation.TransformationParameter(trf, name, type_)
Bases: Type

Represents a typed transformation parameter. Can be used as a substitute of an array for functions which are
only interested in array metadata.

class reikna.core.transformation.KernelParameter(name, type_, load_idx=None,
store_idx=None, load_same=None,
store_same=None,
load_combined_idx=None,
store_combined_idx=None)

Providing an interface for accessing kernel arguments in a template. Depending on the parameter type, and
whether it is used inside a computation or a transformation template, can have different load/store attributes
available.

name
Parameter name

shape

dtype

ctype

strides

offset
Same as in Type.

__str__()
Returns the C kernel parameter name corresponding to this parameter. It is the only method available for
scalar parameters.

load_idx
A module providing a macro with the signature (idx0, idx1, ...), returning the corresponding
element of the array.

store_idx
A module providing a macro with the signature (idx0, idx1, ..., val), saving val into the
specified position.

load_combined_idx(slices)
A module providing a macro with the signature (cidx0, cidx1, ...), returning the element of the
array corresponding to the new slicing of indices (e.g. an array with shape (2, 3, 4, 5, 6) sliced as
slices=(2, 2, 1) is indexed as an array with shape (6, 20, 6)).

store_combined_idx(slices)
A module providing a macro with the signature (cidx0, cidx1, ..., val), saving val into the
specified position corresponding to the new slicing of indices.

load_same
A module providing a macro that returns the element of the array corresponding to the indices used by the
caller of the transformation.

36 Chapter 2. Contents

reikna Documentation, Release 0.7.1

store_same
A module providing a macro with the signature (val) that stores val using the indices used by the caller
of the transformation.

2.5.5 Computations

Algorithms

General purpose algorithms.

Pure parallel computations

class reikna.algorithms.PureParallel(parameters, code, guiding_array=None, ren-
der_kwds=None)

Bases: Computation

A general class for pure parallel computations (i.e. with no interaction between threads).

Parameters

• parameters – a list of Parameter objects.

• code – a source code for the computation. Can be a Snippet object which will be
passed Indices object for the guiding_array as the first positional argument, and
KernelParameter objects corresponding to parameters as the rest of positional ar-
guments. If it is a string, such Snippet will be created out of it, with the parameter names
idxs for the first one and the names of parameters for the remaining ones.

• guiding_array – an tuple with the array shape, or the name of one of parameters.
By default, the first parameter is chosen.

• render_kwds – a dictionary with render keywords for the code.

compiled_signature(*args)

Parameters args – corresponds to the given parameters.

classmethod from_trf(trf, guiding_array=None)
Creates a PureParallel instance from a Transformation object. guiding_array
can be a string with a name of an array parameter from trf, or the corresponding
TransformationParameter object.

Transposition (permutation)

class reikna.algorithms.Transpose(arr_t, output_arr_t=None, axes=None,
block_width_override=None)

Bases: Computation

Changes the order of axes in a multidimensional array. Works analogous to numpy.transpose.

Parameters

• arr_t – an array-like defining the initial array.

• output_arr_t – an array-like defining the output array. If None, its shape will be de-
rived based on the shape of arr_t, its dtype will be equal to that of arr_t, and any
non-default offset or strides of arr_t will be ignored.

2.5. API reference 37

reikna Documentation, Release 0.7.1

• axes – tuple with the new axes order. If None, then axes will be reversed.

compiled_signature(output:o, input:i)

Parameters

• output – an array with all the attributes of arr_t, with the shape permuted according
to axes.

• input – an array with all the attributes of arr_t.

Reduction

class reikna.algorithms.Reduce(arr_t, predicate, axes=None, output_arr_t=None)
Bases: Computation

Reduces the array over given axis using given binary operation.

Parameters

• arr_t – an array-like defining the initial array.

• predicate – a Predicate object.

• axes – a list of non-repeating axes to reduce over. If None, the whole array will be reduced
(in which case the shape of the output array is (1,)).

• output_arr_t – an output array metadata (the shape must still correspond to the result
of reducing the original array over given axes, but offset and strides can be set to the desired
ones).

compiled_signature(output:o, input:i)

Parameters

• input – an array with the attributes of arr_t.

• output – an array with the attributes of arr_t, with its shape missing axes from axes.

Scan

class reikna.algorithms.Scan(arr_t, predicate, axes=None, exclusive=False,
max_work_group_size=None, seq_size=None)

Bases: Computation

Scans the array over given axis using given binary operation. Namely, from an array [a, b, c, d, ...]
and an operation ., produces [a, a.b, a.b.c, a.b.c.d, ...] if exclusive is False and [0,
a, a.b, a.b.c, ...] if exclusive is True (here 0 is the operation’s identity element).

Parameters

• arr_t – an array-like defining the initial array.

• predicate – a Predicate object.

• axes – a list of non-repeating axes to scan over. (Note that the result will depend on the
order of the axes). If None, the whole array will be scanned over.

• exclusive – whether to perform an exclusive scan (see above).

• max_work_group_size – the maximum workgroup size to be used for the scan kernel.

38 Chapter 2. Contents

reikna Documentation, Release 0.7.1

• seq_size – the number of elements to be scanned sequentially. If not given, Reikna will
attempt to choose the one resulting in the best performance, but sometimes a manual choice
may be better.

compiled_signature(output:o, input:i)

Parameters

• input – an array with the attributes of arr_t.

• output – an array with the attributes of arr_t.

Predicates

class reikna.algorithms.Predicate(operation, empty)
A predicate used in some of Reikna algorithms (e.g. Reduce or Scan).

Parameters

• operation – a Snippet object with two parameters which will take the names of two
arguments to join.

• empty – a numpy scalar with the empty value of the argument (the one which, being joined
by another argument, does not change it).

reikna.algorithms.predicate_sum(dtype)
Returns a Predicate object which sums its arguments.

Linear algebra

Linear algebra algorithms.

Matrix multiplication (dot product)

class reikna.linalg.MatrixMul(a_arr, b_arr, out_arr=None, block_width_override=None, trans-
posed_a=False, transposed_b=False)

Bases: Computation

Multiplies two matrices using last two dimensions and batching over remaining dimensions. For batching to
work, the products of remaining dimensions should be equal (then the multiplication will be performed piece-
wise), or one of them should equal 1 (then the multiplication will be batched over the remaining dimensions of
the other matrix).

Parameters

• a_arr – an array-like defining the first argument.

• b_arr – an array-like defining the second argument.

• out_arr – an array-like definign the output; if not given, both shape and dtype will be
derived from a_arr and b_arr.

• block_width_override – if provided, it will used as a block size of the multiplication
kernel.

• transposed_a – if True, the first matrix will be transposed before the multiplication.

• transposed_b – if True, the second matrix will be transposed before the multiplication.

compiled_signature(output:o, matrix_a:i, matrix_b:i)

2.5. API reference 39

reikna Documentation, Release 0.7.1

Parameters

• output – the output of matrix multiplication.

• matrix_a – the first argument.

• matrix_b – the second argument.

Matrix norms

class reikna.linalg.EntrywiseNorm(arr_t, order=2, axes=None)
Bases: Computation

Calculates the entrywise matrix norm (same as numpy.linalg.norm) of an arbitrary order 𝑟:

||𝐴||𝑟 =

⎛⎝∑︁
𝑖,𝑗,...

|𝐴𝑖,𝑗,...|𝑟
⎞⎠1/𝑟

Parameters

• arr_t – an array-like defining the initial array.

• order – the order 𝑟 (any real number).

• axes – a list of non-repeating axes to sum over. If None, the norm of the whole array will
be calculated.

compiled_signature(output:o, input:i)

Parameters

• input – an array with the attributes of arr_t.

• output – an array with the attributes of arr_t, with its shape missing axes from axes.

Fast Fourier transform and related utilities

Fast Fourier Transform

class reikna.fft.FFT(arr_t, axes=None)
Bases: Computation

Performs the Fast Fourier Transform. The interface is similar to numpy.fft.fftn. The inverse transform is
normalized so that IFFT(FFT(X)) = X.

Parameters

• arr_t – an array-like defining the problem array.

• axes – a tuple with axes over which to perform the transform. If not given, the transform
is performed over all the axes.

Note: Current algorithm works most effectively with array dimensions being power of 2 This mostly applies to
the axes over which the transform is performed, beacuse otherwise the computation falls back to the Bluestein’s
algorithm, which effectively halves the performance.

compiled_signature(output:o, input:i, inverse:s)
output and input may be the same array.

40 Chapter 2. Contents

reikna Documentation, Release 0.7.1

Parameters

• output – an array with the attributes of arr_t.

• input – an array with the attributes of arr_t.

• inverse – a scalar value castable to integer. If 0, output contains the forward FFT of
input, if 1, the inverse one.

FFT frequency shift

class reikna.fft.FFTShift(arr_t, axes=None)
Bases: Computation

Shift the zero-frequency component to the center of the spectrum. The interface is similar to numpy.fft.
fftshift, and the output is the same for the same array shape and axes.

Parameters

• arr_t – an array-like defining the problem array.

• axes – a tuple with axes over which to perform the shift. If not given, the shift is performed
over all the axes.

compiled_signature(output:o, input:i)
output and input may be the same array.

Parameters

• output – an array with the attributes of arr_t.

• input – an array with the attributes of arr_t.

Discrete harmonic transform

reikna.dht.get_spatial_grid(modes, order, add_points=0)
Returns the spatial grid required to calculate the order power of a function defined in the harmonic mode space
of the size modes. If add_points is 0, the grid has the minimum size required for exact transformation back
to the mode space.

reikna.dht.harmonic(mode)
Returns an eigenfunction of order 𝑛 = mode for the harmonic oscillator:

𝜑𝑛 =
1

4
√
𝜋
√

2𝑛𝑛!
𝐻𝑛(𝑥) exp(−𝑥2/2),

where 𝐻𝑛 is the 𝑛-th order “physicists’” Hermite polynomial. The normalization is chosen so that
∫︀
𝜑2
𝑛(𝑥)𝑑𝑥 =

1.

class reikna.dht.DHT(mode_arr, add_points=None, inverse=False, order=1, axes=None)
Bases: Computation

Discrete transform to and from harmonic oscillator modes. With inverse=True transforms a function defined
by its expansion 𝐶𝑚, 𝑚 = 0 . . .𝑀 − 1 in the mode space with mode functions from harmonic(), to the
coordinate space (𝐹 (𝑥) on the grid 𝑥 from get_spatial_grid()). With inverse=False guarantees to
recover first 𝑀 modes of 𝐹 𝑘(𝑥), where 𝑘 is the order parameter.

For multiple dimensions the operation is the same, and the mode functions are products of 1D mode functions,
i.e. 𝜑3𝐷

𝑙,𝑚,𝑛(𝑥, 𝑦, 𝑧) = 𝜑𝑙(𝑥)𝜑𝑚(𝑦)𝜑𝑛(𝑧).

For the detailed description of the algorithm, see Dion & Cances, PRE 67(4) 046706 (2003)

2.5. API reference 41

http://dx.doi.org/10.1103/PhysRevE.67.046706

reikna Documentation, Release 0.7.1

Parameters

• mode_arr – an array-like object defining the shape of mode space. If inverse=False,
its shape is used to define the mode space size.

• inverse – False for forward (coordinate space -> mode space) transform, True for
inverse (mode space -> coordinate space) transform.

• axes – a tuple with axes over which to perform the transform. If not given, the transform
is performed over all the axes.

• order – if F is a function in mode space, the number of spatial points is chosen so that the
transformation DHT[(DHT^{-1}[F])^order] could be performed.

• add_points – a list of the same length as mode_arr shape, specifying the number of
points in x-space to use in addition to minimally required (0 by default).

compiled_signature_forward(modes:o, coords:i)

compiled_signature_inverse(coords:o, modes:i)
Depending on inverse value, either of these two will be created.

Parameters

• modes – an array with the attributes of mode_arr.

• coords – an array with the shape depending on mode_arr, axes, order and
add_points, and the dtype of mode_arr.

Counter-based random number generators

This module is based on the paper by Salmon et al., P. Int. C. High. Perform. 16 (2011). and the source code of
Random123 library.

A counter-based random-number generator (CBRNG) is a parametrized function 𝑓𝑘(𝑐), where 𝑘 is the key, 𝑐 is the
counter, and the function 𝑓𝑘 defines a bijection in the set of integer numbers. Being applied to successive counters,
the function produces a sequence of pseudo-random numbers. The key is an analogue of the seed of stateful RNGs; if
the CBRNG is used to generate random num bers in parallel threads, the key is a combination of a seed and a unique
thread number.

There are two types of generators available, threefry (uses large number of simple functions), and philox (uses
smaller number of more complicated functions). The latter one is generally faster on GPUs; see the paper above for
detailed comparisons. These generators can be further specialized to use words=2 or words=4 bitness=32-bit
or bitness=64-bit counters. Obviously, the period of the generator equals to the cardinality of the set of possible
counters. For example, if the counter consits of 4 64-bit numbers, then the period of the generator is 2256. As for the
key size, in case of threefry the key has the same size as the counter, and for philox the key is half its size.

The CBRNG class sets one of the words of the key (except for philox-2x64, where 32 bit of the only word in the
key are used), the rest are the same for all threads and are derived from the provided seed. This limits the maximum
number of number-generating threads (size). philox-2x32 has a 32-bit key and therefore cannot be used in
CBRNG (although it can be used separately with the help of the kernel API).

The CBRNG class itself is stateless, same as other computations in Reikna, so you have to manage the generator state
yourself. The state is created by the create_counters() method and contains a size counters. This state is
then passed to, and updated by a CBRNG object.

class reikna.cbrng.CBRNG(randoms_arr, generators_dim, sampler, seed=None)
Bases: Computation

Counter-based pseudo-random number generator class.

Parameters

42 Chapter 2. Contents

http://dx.doi.org/doi:10.1145/2063384.2063405
http://www.thesalmons.org/john/random123/

reikna Documentation, Release 0.7.1

• randoms_arr – an array intended for storing generated random numbers.

• generators_dim – the number of dimensions (counting from the end) which will use in-
dependent generators. For example, if randoms_arr has the shape (100, 200, 300)
and generators_dim is 2, then in every sub-array (j, :, :), j = 0 .. 99, ev-
ery element will use an independent generator.

• sampler – a Sampler object.

• seed – None for random seed, or an integer.

classmethod sampler_name(randoms_arr, generators_dim, sampler_kwds=None, seed=None)
A convenience constructor for the sampler sampler_name from samplers. The contents of the dic-
tionary sampler_kwds will be passed to the sampler constructor function (with bijection being
created automatically, and dtype taken from randoms_arr).

compiled_signature(counters:io, randoms:o)

Parameters

• counters – the RNG “state”. All attributes are equal to the ones of the result of
create_counters().

• randoms – generated random numbers. All attributes are equal to the ones of
randoms_arr from the constructor.

create_counters()
Create a counter array for use in CBRNG.

Kernel API

class reikna.cbrng.bijections.Bijection(module, word_dtype, key_dtype, counter_dtype)
Contains a CBRNG bijection module and accompanying metadata. Supports __process_modules__ pro-
tocol.

word_dtype
The data type of the integer word used by the generator.

key_words
The number of words used by the key.

counter_words
The number of words used by the counter.

key_dtype
The numpy.dtype object representing a bijection key. Contains a single array field v with key_words
of word_dtype elements.

counter_dtype
The numpy.dtype object representing a bijection counter. Contains a single array field v with
key_words of word_dtype elements.

raw_functions
A dictionary dtype:function_name of available functions function_name in module that
produce a random full-range integer dtype from a State, advancing it. Available functions:
get_raw_uint32(), get_raw_uint64().

module
The module containing the CBRNG function. It provides the C functions below.

2.5. API reference 43

reikna Documentation, Release 0.7.1

COUNTER_WORDS
Contains the value of counter_words.

KEY_WORDS
Contains the value of key_words.

Word
Contains the type corresponding to word_dtype.

Key
Describes the bijection key. Alias for the structure generated from key_dtype.

Word v[KEY_WORDS]

Counter
Describes the bijection counter, or its output. Alias for the structure generated from counter_dtype.

Word v[COUNTER_WORDS]

Counter make_counter_from_int(int x)
Creates a counter object from an integer.

Counter bijection(Key key, Counter counter)
The main bijection function.

State
A structure containing the CBRNG state which is used by samplers.

State make_state(Key key, Counter counter)
Creates a new state object.

Counter get_next_unused_counter(State state)
Extracts a counter which has not been used in random sampling.

uint32
A type of unsigned 32-bit word, corresponds to numpy.uint32.

uint64
A type of unsigned 64-bit word, corresponds to numpy.uint64.

uint32 get_raw_uint32(State *state)
Returns uniformly distributed unsigned 32-bit word and updates the state.

uint64 get_raw_uint64(State *state)
Returns uniformly distributed unsigned 64-bit word and updates the state.

reikna.cbrng.bijections.philox(bitness, counter_words, rounds=10)
A CBRNG based on a low number of slow rounds (multiplications).

Parameters

• bitness – 32 or 64, corresponds to the size of generated random integers.

• counter_words – 2 or 4, number of integers generated in one go.

• rounds – 1 to 12, the more rounds, the better randomness is achieved. Default values are
big enough to qualify as PRNG.

Returns a Bijection object.

reikna.cbrng.bijections.threefry(bitness, counter_words, rounds=20)
A CBRNG based on a big number of fast rounds (bit rotations).

Parameters

• bitness – 32 or 64, corresponds to the size of generated random integers.

44 Chapter 2. Contents

reikna Documentation, Release 0.7.1

• counter_words – 2 or 4, number of integers generated in one go.

• rounds – 1 to 72, the more rounds, the better randomness is achieved. Default values are
big enough to qualify as PRNG.

Returns a Bijection object.

class reikna.cbrng.samplers.Sampler(bijection, module, dtype, randoms_per_call=1, determin-
istic=False)

Contains a random distribution sampler module and accompanying metadata. Supports
__process_modules__ protocol.

deterministic
If True, every sampled random number consumes the same amount of counters.

randoms_per_call
How many random numbers one call to sample creates.

dtype
The data type of one random value produced by the sampler.

module
The module containing the distribution sampling function. It provides the C functions below.

RANDOMS_PER_CALL
Contains the value of randoms_per_call.

Value
Contains the type corresponding to dtype.

Result
Describes the sampling result.

value v[RANDOMS_PER_CALL]

Result sample(State *state)
Performs the sampling, updating the state.

reikna.cbrng.samplers.gamma(bijection, dtype, shape=1, scale=1)
Generates random numbers from the gamma distribution

𝑃 (𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is shape, and 𝜃 is scale. Supported dtypes: float(32/64). Returns a Sampler object.

reikna.cbrng.samplers.normal_bm(bijection, dtype, mean=0, std=1)
Generates normally distributed random numbers with the mean mean and the standard deviation std using
Box-Muller transform. Supported dtypes: float(32/64), complex(64/128). Produces two random
numbers per call for real types and one number for complex types. Returns a Sampler object.

Note: In case of a complex dtype, std refers to the standard deviation of the complex numbers (same
as numpy.std() returns), not real and imaginary components (which will be normally distributed with the
standard deviation std / sqrt(2)). Consequently, while mean is of type dtype, std must be real.

reikna.cbrng.samplers.uniform_float(bijection, dtype, low=0, high=1)
Generates uniformly distributed floating-points numbers in the interval [low, high). Supported dtypes:
float(32/64). A fixed number of counters is used in each thread. Returns a Sampler object.

reikna.cbrng.samplers.uniform_integer(bijection, dtype, low, high=None)
Generates uniformly distributed integer numbers in the interval [low, high). If high is None, the interval

2.5. API reference 45

reikna Documentation, Release 0.7.1

is [0, low). Supported dtypes: any numpy integers. If the size of the interval is a power of 2, a fixed number
of counters is used in each thread. Returns a Sampler object.

reikna.cbrng.samplers.vonmises(bijection, dtype, mu=0, kappa=1)
Generates random numbers from the von Mises distribution

𝑃 (𝑥) =
exp(𝜅 cos(𝑥− 𝜇))

2𝜋𝐼0(𝜅)
,

where 𝜇 is the mode, 𝜅 is the dispersion, and 𝐼0 is the modified Bessel function of the first kind. Supported
dtypes: float(32/64). Returns a Sampler object.

class reikna.cbrng.tools.KeyGenerator(module, base_key)
Contains a key generator module and accompanying metadata. Supports __process_modules__ protocol.

module
A module with the key generator function:

Key key_from_int(int idx)
Generates and returns a key, suitable for the bijection which was given to the constructor.

classmethod create(bijection, seed=None, reserve_id_space=True)
Creates a generator.

Parameters

• bijection – a Bijection object.

• seed – an integer, or numpy array of 32-bit unsigned integers.

• reserve_id_space – if True, the last 32 bit of the key will be reserved for the thread
identifier. As a result, the total size of the key should be 64 bit or more. If False, the
thread identifier will be just added to the key, which will still result in different keys for
different threads, with the danger that different seeds produce the same sequences.

reference(idx)
Reference function that returns the key given the thread identifier. Uses the same algorithm as the module.

2.5.6 Transformations

This module contains a number of pre-created transformations.

reikna.transformations.add_const(arr_t, param)
Returns an addition transformation with a fixed parameter (1 output, 1 input): output = input + param.

reikna.transformations.add_param(arr_t, param_dtype)
Returns an addition transformation with a dynamic parameter (1 output, 1 input, 1 scalar): output = input
+ param.

reikna.transformations.broadcast_const(arr_t, val)
Returns a transformation that broadcasts the given constant to the array output (1 output): output = val.

reikna.transformations.broadcast_param(arr_t)
Returns a transformation that broadcasts the free parameter to the array output (1 output, 1 param): output =
param.

reikna.transformations.combine_complex(output_arr_t)
Returns a transformation that joins two real inputs into complex output (1 output, 2 inputs): output = real
+ 1j * imag.

46 Chapter 2. Contents

reikna Documentation, Release 0.7.1

reikna.transformations.copy(arr_t, out_arr_t=None)
Returns an identity transformation (1 output, 1 input): output = input. Output array type out_arr_t
may have different strides, but must have the same shape and data type.

reikna.transformations.div_const(arr_t, param)
Returns a scaling transformation with a fixed parameter (1 output, 1 input): output = input / param.

reikna.transformations.div_param(arr_t, param_dtype)
Returns a scaling transformation with a dynamic parameter (1 output, 1 input, 1 scalar): output = input
/ param.

reikna.transformations.ignore(arr_t)
Returns a transformation that ignores the output it is attached to.

reikna.transformations.mul_const(arr_t, param)
Returns a scaling transformation with a fixed parameter (1 output, 1 input): output = input * param.

reikna.transformations.mul_param(arr_t, param_dtype)
Returns a scaling transformation with a dynamic parameter (1 output, 1 input, 1 scalar): output = input

* param.

reikna.transformations.norm_const(arr_t, order)
Returns a transformation that calculates the order-norm (1 output, 1 input): output = abs(input) **
order.

reikna.transformations.norm_param(arr_t)
Returns a transformation that calculates the order-norm (1 output, 1 input, 1 param): output =
abs(input) ** order.

reikna.transformations.split_complex(input_arr_t)
Returns a transformation that splits complex input into two real outputs (2 outputs, 1 input): real =
Re(input), imag = Im(input).

2.6 Release history

2.6.1 0.7.1 (14 Aug 2018)

• CHANGED: SIZE_T and VSIZE_T are now signed integers, to avoid problems with negative indices and
strides.

• CHANGED: Array views now return Array objects.

• CHANGED: a Type object can only be equal to another Type object (before it only required equality of the
attributes).

• ADDED: an output_arr_t keyword parameter for Transpose and Reduce.

• ADDED: a proper support for non-zero array offsets and array views. Added base, base_data and nbytes
keyword parameters for array(). Other array-allocating methods and the constructor of Type now also have
the nbytes keyword.

• ADDED: a specialized FFT example (examples/demo_specialized_fft.py).

• ADDED: a method padded() of Type.

• ADDED: an api_id attribute for DeviceParameters objects.

• ADDED: a kernel_name parameter for ComputationPlan.kernel_call. Also, all built-in computa-
tions now have custom-set kernel names for the ease of profiling.

2.6. Release history 47

reikna Documentation, Release 0.7.1

• ADDED: Type objects are now hashable.

• ADDED: a keep optional parameter for Thread.compile, Thread.compile_static and
Computation.compile, allowing one to preserve the generated source code and binaries.

• FIXED: a bug where a computation with constant arrays could not be called from another computation.

• FIXED: an incorrect call to PyCUDA in Array.copy().

2.6.2 0.7.0 (5 Jul 2018)

• CHANGED: async keywords in multiple methods have been renamed to async_, since async is a keyword
starting from Python 3.7.

• ADDED: an ability to handle array views in computations.

• ADDED: a scan class Scan.

• ADDED: an optional parameter compiler_options for Thread.compile, Thread.
compile_static and Computation.compile, allowing one to pass additional options to the
compiler.

• ADDED: support for constant arrays. On CLUDA level, use constant_arrays keyword parameter to
compile() and compile_static(), and subsequent set_constant() (CUDA only) (or the anal-
ogous methods of Kernel or StaticKernel). On the computation level, use ComputationPlan.
constant_array to declare a constant array, and then pass the returned objects to kernels as any other
argument.

• FIXED: some methods inherited by Array from the backend array class in case of the OpenCL backend failed
because of the changed interface.

• FIXED: incorrect postfix in the result of c_constant() for unsigned long integers.

2.6.3 0.6.8 (18 Dec 2016)

• ADDED: a von Mises distribution sampler (vonmises()).

• ADDED: div_const() and div_param() transformations.

• ADDED: Kernel.prepared_call, Kernel.__call__ and StaticKernel.__call__ now return
the resulting Event object in case of the OpenCL backend. ComputationCallable.__call__ returns
a list of Event objects from the nested kernel calls.

• FIXED: properly handling the case of an unfinished __init__() in Thread (when __del__() tries to
access non-existent attributes).

• FIXED: an error when using from_trf() without specifying the guiding array in Py3.

• FIXED: (reported by @mountaindust) Array.copy now actually copies the array contents in CUDA backend.

• FIXED: (reported by @Philonoist) load_idx/store_idx handled expressions in parameters incorrectly
(errors during macro expansion).

• FIXED: a minor bug in the information displayed during the interactive Thread creation.

• FIXED: class names in the test suite that produced errors (due to the changed rules for test discovery in py.
test).

• FIXED: updated ReturnValuesPlugin in the test suite to conform to py.test interface changes.

48 Chapter 2. Contents

reikna Documentation, Release 0.7.1

2.6.4 0.6.7 (11 Mar 2016)

• ADDED: an example of a transposition-based n-dimensional FFT (demo_fftn_with_transpose.py).

• FIXED: a problem with Beignet OpenCL driver where the INLINE macro was being redefined.

• FIXED: a bug in Reduce where reduction over a struct type with a nested array produced a template rendering
error.

• FIXED: now taking the minimum time over several attempts instead of the average in several performance tests
(as it is done in the rest of the test suite).

• FIXED: Transpose now calculates the required elementary transpositions in the constructor instead of doing
it during the compilation.

2.6.5 0.6.6 (11 May 2015)

• FIXED: a bug with the NAN constant not being defined in CUDA on Windows.

• FIXED: (PR by @ringw) copying and arithmetic operations on Reikna arrays now preserve the array type
instead of resetting it to PyOpenCL/PyCUDA array.

• FIXED: a bug in virtual size finding algorithm that could cause
get_local_id(ndim)/get_global_id(ndim) being called with an argument out of the range
supported by the OpenCL standard, causing compilation fails on some platforms.

• FIXED: now omitting some of redundant modulus operations in virtual size functions.

• ADDED: an example of a spectrogram-calculating computation (demo_specgram.py).

2.6.6 0.6.5 (31 Mar 2015)

• CHANGED: the correspondence for numpy.uintp is not registered by default anymore — this type is not
really useful in CPU-GPU interaction.

• FIXED: (reported by J. Vacher) dtype/ctype correspondences for 64-bit integer types are registered even if the
Python interpreter is 32-bit.

• ADDED: ComputationCallable objects expose the attribute thread.

• ADDED: FFTShift computation.

• ADDED: an example of an element-reshuffling transformation.

2.6.7 0.6.4 (29 Sep 2014)

• CHANGED: renamed power_dtype parameter to exponent_dtype (a more correct term) in pow().

• FIXED: (PR by @ringw) exception caused by printing CUDA program object.

• FIXED: pow() (0, 0) now returns 1 as it should.

• ADDED: an example of FFT with a custom transformation.

• ADDED: a type check in the FFT constructor.

• ADDED: an explicit output_dtype parameter for pow().

• ADDED: Array objects for each backend expose the attribute thread.

2.6. Release history 49

reikna Documentation, Release 0.7.1

2.6.8 0.6.3 (18 Jun 2014)

• FIXED: (@schreon) a bug preventing the usage of EntrywiseNorm with custom axes.

• FIXED: (PR by @SyamGadde) removed syntax constructions incompatible with Python 2.6.

• FIXED: added Python 3.4 to the list of classifiers.

2.6.9 0.6.2 (20 Feb 2014)

• ADDED: pow() function module in CLUDA.

• ADDED: a function any_api() that returns some supported GPGPU API module.

• ADDED: an example of Reduce with a custom data type.

• FIXED: a Py3 compatibility issue in Reduce introduced in 0.6.1.

• FIXED: a bug due to the interaction between the implementation of from_trf() and the logic of processing
nested computations.

• FIXED: a bug in FFT leading to undefined behavior on some OpenCL platforms.

2.6.10 0.6.1 (4 Feb 2014)

• FIXED: Reduce can now pick a decreased work group size if the attached transformations are too demanding.

2.6.11 0.6.0 (27 Dec 2013)

• CHANGED: some computations were moved to sub-packages: PureParallel, Transpose and Reduce
to reikna.algorithms, MatrixMul and EntrywiseNorm to reikna.linalg.

• CHANGED: scale_const and scale_param were renamed to mul_const() and mul_param(), and
the scalar parameter name of the latter was renamed from coeff to param.

• ADDED: two transformations for norm of an arbitrary order: norm_const() and norm_param().

• ADDED: stub transformation ignore().

• ADDED: broadcasting transformations broadcast_const() and broadcast_param().

• ADDED: addition transformations add_const() and add_param().

• ADDED: EntrywiseNorm computation.

• ADDED: support for multi-dimensional sub-arrays in c_constant() and flatten_dtype().

• ADDED: helper functions extract_field() and c_path() to work in conjunction with
flatten_dtype().

• ADDED: a function module add().

• FIXED: casting a coefficient in the normal_bm() template to a correct dtype.

• FIXED: cast() avoids casting if the value already has the target dtype (since numpy.cast does not work
with struct dtypes, see issue #4148).

• FIXED: a error in transformation module rendering for scalar parameters with struct dtypes.

• FIXED: normalizing dtypes in several functions from dtypes to avoid errors with numpy dtype shortcuts.

50 Chapter 2. Contents

reikna Documentation, Release 0.7.1

2.6.12 0.5.2 (17 Dec 2013)

• ADDED: normal_bm() now supports complex dtypes.

• FIXED: a nested PureParallel can now take several identical argument objects as arguments.

• FIXED: a nested computation can now take a single input/output argument (e.g. a temporary array) as separate
input and output arguments.

• FIXED: a critical bug in CBRNG that could lead to the counter array not being updated.

• FIXED: convenience constructors of CBRNG can now properly handle None as samplers_kwds.

2.6.13 0.5.1 (30 Nov 2013)

• FIXED: a possible infinite loop in compile_static() local size finding algorithm.

2.6.14 0.5.0 (25 Nov 2013)

• CHANGED: KernelParameter is not derived from Type anymore (although it still retains the correspond-
ing attributes).

• CHANGED: Predicate now takes a dtype’d value as empty, not a string.

• CHANGED: The logic of processing struct dtypes was reworked, and adjust_alignment was removed.
Instead, one should use align() (which does not take a Thread parameter) to get a dtype with the offsets
and itemsize equal to those a compiler would set. On the other hand, ctype_module() attempts to set the
alignments such that the field offsets are the same as in the given numpy dtype (unless ignore_alignments
flag is set).

• ADDED: struct dtypes support in c_constant().

• ADDED: flatten_dtype() helper function.

• ADDED: added transposed_a and transposed_b keyword parameters to MatrixMul.

• ADDED: algorithm cascading to Reduce, leading to 3-4 times increase in performance.

• ADDED: polar_unit() function module in CLUDA.

• ADDED: support for arrays with 0-dimensional shape as computation and transformation arguments.

• FIXED: a bug in Reduce, which lead to incorrect results in cases when the reduction power is exactly equal to
the maximum one.

• FIXED: Transpose now works correctly for struct dtypes.

• FIXED: bounding_power_of_2 now correctly returns 1 instead of 2 being given 1 as an argument.

• FIXED: compile_static() local size finding algorithm is much less prone to failure now.

2.6.15 0.4.0 (10 Nov 2013)

• CHANGED: supports_dtype() method moved from Thread to DeviceParameters.

• CHANGED: fast_math keyword parameter moved from Thread constructor to compile()
and compile_static(). It is also False by default, instead of True. Correspondingly,
THREAD_FAST_MATH macro was renamed to COMPILE_FAST_MATH .

2.6. Release history 51

reikna Documentation, Release 0.7.1

• CHANGED: CBRNG modules are using the dtype-to-ctype support. Correspondingly, the C types for keys and
counters can be obtained by calling ctype_module() on key_dtype and counter_dtype attributes.
The module wrappers still define their types, but their names are using a different naming convention now.

• ADDED: module generator for nested dtypes (ctype_module()) and a function to get natural field offsets
for a given API/device (adjust_alignment).

• ADDED: fast_math keyword parameter in compile(). In other words, now fast_math can be set per
computation.

• ADDED: ALIGN macro is available in CLUDA kernels.

• ADDED: support for struct types as Computation arguments (for them, the ctypes attributes contain the
corresponding module obtained with ctype_module()).

• ADDED: support for non-sequential axes in Reduce.

• FIXED: bug in the interactive Thread creation (reported by James Bergstra).

• FIXED: Py3-incompatibility in the interactive Thread creation.

• FIXED: some code paths in virtual size finding algorithm could result in a type error.

• FIXED: improved the speed of test collection by reusing Thread objects.

2.6.16 0.3.6 (9 Aug 2013)

• ADDED: the first argument to the Transformation or PureParallel snippet is now a reikna.core.
Indices object instead of a list.

• ADDED: classmethod PureParallel.from_trf(), which allows one to create a pure parallel computa-
tion out of a transformation.

• FIXED: improved Computation.compile() performance for complicated computations by precreating
transformation templates.

2.6.17 0.3.5 (6 Aug 2013)

• FIXED: bug with virtual size algorithms returning floating point global and local sizes in Py2.

2.6.18 0.3.4 (3 Aug 2013)

• CHANGED: virtual sizes algorithms were rewritten and are now more maintainable. In addition, virtual sizes
can now handle any number of dimensions of local and global size, providing the device can support the corre-
sponding total number of work items and groups.

• CHANGED: id- and size- getting kernel functions now have return types corresponding to their equivalents.
Virtual size functions have their own independent return type.

• CHANGED: Thread.compile_static() and ComputationPlan.kernel_call() take global
and local sizes in the row-major order, to correspond to the matrix indexing in load/store macros.

• FIXED: requirements for PyCUDA extras (a currently non-existent version was specified).

• FIXED: an error in gamma distribution sampler, which lead to slightly wrong shape of the resulting distribution.

52 Chapter 2. Contents

reikna Documentation, Release 0.7.1

2.6.19 0.3.3 (29 Jul 2013)

• FIXED: package metadata.

2.6.20 0.3.2 (29 Jul 2013)

• ADDED: same module object, when being called without arguments from other modules/snippets, is rendered
only once and returns the same prefix each time. This allows one to create structure declarations that can be
used by functions in several modules.

• ADDED: reworked cbrng module and exposed kernel interface of bijections and samplers.

• CHANGED: slightly changed the algorithm that determines the order of computation parameters after a trans-
formation is connected to it. Now the ordering inside a list of initial computation parameters or a list of a single
transformation parameters is preserved.

• CHANGED: kernel declaration string is now passed explicitly to a kernel template as the first parameter.

• FIXED: typo in FFT performance test.

• FIXED: bug in FFT that could result in changing the contents of the input array to one of the intermediate
results.

• FIXED: missing data type normalization in c_constant().

• FIXED: Py3 incompatibility in cluda.cuda.

• FIXED: updated some obsolete computation docstrings.

2.6.21 0.3.1 (25 Jul 2013)

• FIXED: too strict array type check for nested computations that caused some tests to fail.

• FIXED: default values of scalar parameters are now processed correctly.

• FIXED: Mako threw name-not-found exceptions on some list comprehensions in FFT template.

• FIXED: some earlier-introduced errors in tests.

• INTERNAL: pylint was ran and many stylistic errors fixed.

2.6.22 0.3.0 (23 Jul 2013)

Major core API change:

• Computations have function-like signatures with the standard Signature interface; no more separation of
inputs/outputs/scalars.

• Generic transformations were ditched; all the transformations have static types now.

• Transformations can now change array shapes, and load/store from/to external arrays in output/input transfor-
mations.

• No flat array access in kernels; all access goes through indices. This opens the road for correct and automatic
stride support (not fully implemented yet).

• Computations and accompanying classes are stateless, and their creation is more straightforward.

Other stuff:

• Bumped Python requirements to >=2.6 or >=3.2, and added a dependency on funcsig.

2.6. Release history 53

reikna Documentation, Release 0.7.1

• ADDED: more tests for cluda.functions.

• ADDED: module/snippet attributes discovery protocol for custom objects.

• ADDED: strides support to array allocation functions in CLUDA.

• ADDED: modules can now take positional arguments on instantiation, same as snippets.

• CHANGED: Elementwise becomes PureParallel (as it is not always elementwise).

• FIXED: incorrect behavior of functions.norm() for non-complex arguments.

• FIXED: undefined variable in functions.exp() template (reported by Thibault North).

• FIXED: inconsistent block/grid shapes in static kernels

2.6.23 0.2.4 (11 May 2013)

• ADDED: ability to introduce new scalar arguments for nested computations (the API is quite ugly at the mo-
ment).

• FIXED: handling prefixes properly when connecting transformations to nested computations.

• FIXED: bug in dependency inference algorithm which caused it to ignore allocations in nested computations.

2.6.24 0.2.3 (25 Apr 2013)

• ADDED: explicit release() (primarily for certain rare CUDA use cases).

• CHANGED: CLUDA API discovery interface (see the documentation).

• CHANGED: The part of CLUDA API that is supposed to be used by other layers was moved to the __init__.
py.

• CHANGED: CLUDA Context was renamed to Thread, to avoid confusion with PyCUDA/PyOpenCL con-
texts.

• CHANGED: signature of create(); it can filter devices now, and supports interactive mode.

• CHANGED: Module with snippet=True is now Snippet

• FIXED: added transformation.mako and cbrng_ref.py to the distribution package.

• FIXED: incorrect parameter generation in test/cluda/cluda_vsizes/ids.

• FIXED: skipping testcases with incompatible parameters in test/cluda/cluda_vsizes/ids and
sizes.

• FIXED: setting the correct length of max_num_groups in case of CUDA and a device with CC < 2.

• FIXED: typo in cluda.api_discovery.

2.6.25 0.2.2 (20 Apr 2013)

• ADDED: ability to use custom argument names in transformations.

• ADDED: multi-argument mul().

• ADDED: counter-based random number generator CBRNG.

• ADDED: reikna.elementwise.Elementwise now supports argument dependencies.

• ADDED: Module support in CLUDA; see Tutorial: modules and snippets for details.

54 Chapter 2. Contents

reikna Documentation, Release 0.7.1

• ADDED: template_def().

• CHANGED: reikna.cluda.kernel.render_template_source is the main renderer now.

• CHANGED: FuncCollector class was removed; functions are now used as common modules.

• CHANGED: all templates created with template_for() are now rendered with from __future__
import division.

• CHANGED: signature of OperationRecorder.add_kernel takes a renderable instead of a full template.

• CHANGED: compile_static() now takes a template instead of a source.

• CHANGED: reikna.elementwise.Elementwise now uses modules.

• FIXED: potential problem with local size finidng in static kernels (first approximation for the maximum work-
group size was not that good)

• FIXED: some OpenCL compilation warnings caused by an incorrect version querying macro.

• FIXED: bug with incorrect processing of scalar global size in static kernels.

• FIXED: bug in variance estimates in CBRNG tests.

• FIXED: error in the temporary varaiable type in reikna.cluda.functions.polar() and reikna.
cluda.functions.exp().

2.6.26 0.2.1 (8 Mar 2013)

• FIXED: function names for kernel polar(), exp() and conj().

• FIXED: added forgotten kernel norm() handler.

• FIXED: bug in Py.Test testcase execution hook which caused every test to run twice.

• FIXED: bug in nested computation processing for computation with more than one kernel.

• FIXED: added dependencies between MatrixMul kernel arguments.

• FIXED: taking into account dependencies between input and output arrays as well as the ones between internal
allocations — necessary for nested computations.

• ADDED: discrete harmonic transform DHT (calculated using Gauss-Hermite quadrature).

2.6.27 0.2.0 (3 Mar 2013)

• Added FFT computation (slightly optimized PyFFT version + Bluestein’s algorithm for non-power-of-2 FFT
sizes)

• Added Python 3 compatibility

• Added Thread-global automatic memory packing

• Added polar(), conj() and exp() functions to kernel toolbox

• Changed name because of the clash with another Tigger.

2.6.28 0.1.0 (12 Sep 2012)

• Lots of changes in the API

• Added elementwise, reduction and transposition computations

2.6. Release history 55

http://www.astron.nl/meqwiki/Tigger

reikna Documentation, Release 0.7.1

• Extended API reference and added topical guides

2.6.29 0.0.1 (22 Jul 2012)

• Created basic core for computations and transformations

• Added matrix multiplication computation

• Created basic documentation

56 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

57

reikna Documentation, Release 0.7.1

58 Chapter 3. Indices and tables

Python Module Index

r
reikna.algorithms, 37
reikna.cbrng, 42
reikna.cbrng.bijections, 43
reikna.cbrng.samplers, 45
reikna.cbrng.tools, 46
reikna.cluda, 20
reikna.cluda.api, 21
reikna.cluda.dtypes, 30
reikna.cluda.functions, 28
reikna.cluda.kernel, 28
reikna.cluda.tempalloc, 27
reikna.core, 32
reikna.core.computation, 34
reikna.core.transformation, 36
reikna.fft, 40
reikna.helpers, 19
reikna.linalg, 39
reikna.transformations, 46
reikna.version, 18

59

reikna Documentation, Release 0.7.1

60 Python Module Index

Index

Symbols
__call__() (reikna.cluda.api.Kernel method), 23
__call__() (reikna.cluda.api.StaticKernel method), 23
__call__() (reikna.core.Type method), 32
__call__() (reikna.core.computation.ComputationCallable

method), 35
__getitem__() (reikna.core.Indices method), 34
__str__() (reikna.core.transformation.KernelParameter

method), 36
_build_plan() (reikna.core.Computation method), 33
_update_attributes() (reikna.core.Computation method),

33

A
add() (in module reikna.cluda.functions), 28
add_const() (in module reikna.transformations), 46
add_param() (in module reikna.transformations), 46
ALIGN (C macro), 29
align() (in module reikna.cluda.dtypes), 30
all() (reikna.core.Indices method), 34
allocate() (reikna.cluda.api.Thread method), 24
Annotation (class in reikna.core), 32
any_api() (in module reikna.cluda), 20
api (reikna.cluda.api.Thread attribute), 24
api_id (reikna.cluda.api.DeviceParameters attribute), 22
api_ids() (in module reikna.cluda), 20
Array (class in reikna.cluda.api), 21
array() (reikna.cluda.api.Thread method), 24
array() (reikna.cluda.tempalloc.TemporaryManager

method), 27

B
base_data (reikna.cluda.api.Array attribute), 22
bijection (C function), 44
Bijection (class in reikna.cbrng.bijections), 43
bind_with_defaults() (reikna.core.Signature method), 33
bounding_power_of_2() (in module reikna.helpers), 19
broadcast_const() (in module reikna.transformations), 46
broadcast_param() (in module reikna.transformations),

46

Buffer (class in reikna.cluda.api), 21

C
c_constant() (in module reikna.cluda.dtypes), 30
c_path() (in module reikna.cluda.dtypes), 30
cast() (in module reikna.cluda.dtypes), 30
cast() (in module reikna.cluda.functions), 28
CBRNG (class in reikna.cbrng), 42
combine_complex() (in module reikna.transformations),

46
compile() (reikna.cluda.api.Thread method), 25
compile() (reikna.core.Computation method), 33
COMPILE_FAST_MATH (C macro), 29
compile_static() (reikna.cluda.api.Thread method), 25
compiled_signature() (reikna.algorithms.Reduce

method), 38
compiled_signature() (reikna.algorithms.Scan method),

39
compiled_signature() (reikna.cbrng.CBRNG method), 43
compiled_signature() (reikna.fft.FFT method), 40
compiled_signature() (reikna.fft.FFTShift method), 41
compiled_signature() (reikna.linalg.EntrywiseNorm

method), 40
compiled_signature() (reikna.linalg.MatrixMul method),

39
compiled_signature_forward() (reikna.dht.DHT method),

42
compiled_signature_inverse() (reikna.dht.DHT method),

42
complex_ctr() (in module reikna.cluda.dtypes), 30
complex_for() (in module reikna.cluda.dtypes), 30
Computation (class in reikna.core), 33
computation_call() (reikna.core.computation.ComputationPlan

method), 35
ComputationCallable (class in reikna.core.computation),

34
ComputationParameter (class in

reikna.core.computation), 35
ComputationPlan (class in reikna.core.computation), 35
conj() (in module reikna.cluda.functions), 28

61

reikna Documentation, Release 0.7.1

connect() (reikna.core.Computation method), 33
connect() (reikna.core.computation.ComputationParameter

method), 35
constant_array() (reikna.core.computation.ComputationPlan

method), 35
CONSTANT_MEM (C macro), 29
CONSTANT_MEM_ARG (C macro), 29
copy() (in module reikna.transformations), 46
copy_array() (reikna.cluda.api.Thread method), 26
Counter (C type), 44
counter_dtype (reikna.cbrng.bijections.Bijection at-

tribute), 43
COUNTER_WORDS (C macro), 43
counter_words (reikna.cbrng.bijections.Bijection at-

tribute), 43
create() (reikna.cbrng.tools.KeyGenerator class method),

46
create() (reikna.cluda.api.Thread class method), 26
create() (reikna.cluda.Module class method), 20
create() (reikna.cluda.Snippet class method), 20
create_counters() (reikna.cbrng.CBRNG method), 43
ctype (reikna.core.transformation.KernelParameter

attribute), 36
ctype (reikna.core.Type attribute), 32
ctype() (in module reikna.cluda.dtypes), 30
ctype_module() (in module reikna.cluda.dtypes), 30
CUDA (C macro), 28
cuda_api() (in module reikna.cluda), 20
cuda_id() (in module reikna.cluda), 21

D
default_strides() (in module reikna.helpers), 19
detect_type() (in module reikna.cluda.dtypes), 31
deterministic (reikna.cbrng.samplers.Sampler attribute),

45
device_params (reikna.cluda.api.Thread attribute), 24
DeviceParameters (class in reikna.cluda.api), 22
DHT (class in reikna.dht), 41
div() (in module reikna.cluda.functions), 28
div_const() (in module reikna.transformations), 47
div_param() (in module reikna.transformations), 47
dtype (reikna.cbrng.samplers.Sampler attribute), 45
dtype (reikna.cluda.api.Array attribute), 22
dtype (reikna.core.transformation.KernelParameter at-

tribute), 36
dtype (reikna.core.Type attribute), 32

E
empty_like() (reikna.cluda.api.Thread method), 26
EntrywiseNorm (class in reikna.linalg), 40
exp() (in module reikna.cluda.functions), 28
extract_field() (in module reikna.cluda.dtypes), 31

F
factors() (in module reikna.helpers), 19
FFT (class in reikna.fft), 40
FFTShift (class in reikna.fft), 41
find_devices() (in module reikna.cluda), 21
flatten_dtype() (in module reikna.cluda.dtypes), 31
from_device() (reikna.cluda.api.Thread method), 26
from_trf() (reikna.algorithms.PureParallel class method),

37
from_value() (reikna.core.Type class method), 32
full_version (in module reikna.version), 18

G
gamma() (in module reikna.cbrng.samplers), 45
get() (reikna.cluda.api.Array method), 22
get_api() (in module reikna.cluda), 21
get_devices() (reikna.cluda.api.Platform method), 23
get_global_id (C function), 29
get_global_size (C function), 29
get_group_id (C function), 29
get_id() (in module reikna.cluda.api), 27
get_local_id (C function), 29
get_local_size (C function), 29
get_next_unused_counter (C function), 44
get_num_groups (C function), 29
get_platforms() (in module reikna.cluda.api), 27
get_raw_uint32 (C function), 44
get_raw_uint64 (C function), 44
get_spatial_grid() (in module reikna.dht), 41
git_revision (in module reikna.version), 18
GLOBAL_MEM (C macro), 29

H
harmonic() (in module reikna.dht), 41

I
ignore() (in module reikna.transformations), 47
ignore_integer_overflow (class in reikna.helpers), 19
Indices (class in reikna.core), 34
INLINE (C macro), 29
is_complex() (in module reikna.cluda.dtypes), 31
is_double() (in module reikna.cluda.dtypes), 31
is_integer() (in module reikna.cluda.dtypes), 31
is_real() (in module reikna.cluda.dtypes), 31

K
KERNEL (C macro), 29
Kernel (class in reikna.cluda.api), 23
kernel_call() (reikna.core.computation.ComputationPlan

method), 35
kernel_name (reikna.cluda.api.Program attribute), 23
KernelArgument (class in reikna.core.computation), 35
KernelParameter (class in reikna.core.transformation), 36

62 Index

reikna Documentation, Release 0.7.1

Key (C type), 44
key_dtype (reikna.cbrng.bijections.Bijection attribute),

43
key_from_int (C function), 46
KEY_WORDS (C macro), 44
key_words (reikna.cbrng.bijections.Bijection attribute),

43
KeyGenerator (class in reikna.cbrng.tools), 46

L
load_combined_idx() (reikna.core.transformation.KernelParameter

method), 36
load_idx (reikna.core.transformation.KernelParameter at-

tribute), 36
load_same (reikna.core.transformation.KernelParameter

attribute), 36
LOCAL_BARRIER (C macro), 29
LOCAL_MEM (C macro), 29
LOCAL_MEM_ARG (C macro), 29
local_mem_banks (reikna.cluda.api.DeviceParameters at-

tribute), 22
LOCAL_MEM_DYNAMIC (C macro), 29
local_mem_size (reikna.cluda.api.DeviceParameters at-

tribute), 22
log2() (in module reikna.helpers), 19

M
make_axes_innermost() (in module reikna.helpers), 19
make_counter_from_int (C function), 44
make_state (C function), 44
MatrixMul (class in reikna.linalg), 39
max_num_groups (reikna.cluda.api.DeviceParameters at-

tribute), 22
max_work_group_size (reikna.cluda.api.DeviceParameters

attribute), 22
max_work_group_size (reikna.cluda.api.Kernel at-

tribute), 23
max_work_item_sizes (reikna.cluda.api.DeviceParameters

attribute), 22
min_blocks() (in module reikna.helpers), 19
min_buffer_size() (in module reikna.helpers), 19
min_mem_coalesce_width

(reikna.cluda.api.DeviceParameters attribute),
22

min_scalar_type() (in module reikna.cluda.dtypes), 31
Module (class in reikna.cluda), 20
module (reikna.cbrng.bijections.Bijection attribute), 43
module (reikna.cbrng.samplers.Sampler attribute), 45
module (reikna.cbrng.tools.KeyGenerator attribute), 46
mul() (in module reikna.cluda.functions), 28
mul_const() (in module reikna.transformations), 47
mul_param() (in module reikna.transformations), 47

N
name (reikna.cluda.api.Platform attribute), 22
name (reikna.core.transformation.KernelParameter

attribute), 36
nbytes (reikna.cluda.api.Array attribute), 22
nbytes (reikna.core.Type attribute), 32
norm() (in module reikna.cluda.functions), 28
norm_const() (in module reikna.transformations), 47
norm_param() (in module reikna.transformations), 47
normal_bm() (in module reikna.cbrng.samplers), 45
normalize_axes() (in module reikna.helpers), 19
normalize_type() (in module reikna.cluda.dtypes), 31
normalize_types() (in module reikna.cluda.dtypes), 31

O
ocl_api() (in module reikna.cluda), 21
ocl_id() (in module reikna.cluda), 21
offset (reikna.cluda.api.Array attribute), 22
offset (reikna.core.transformation.KernelParameter at-

tribute), 36
offset (reikna.core.Type attribute), 32
OutOfResourcesError, 20

P
pack() (reikna.cluda.tempalloc.TemporaryManager

method), 27
padded() (reikna.core.Type class method), 32
padded_buffer_parameters() (in module reikna.helpers),

19
Parameter (class in reikna.core), 32
parameter (reikna.core.Computation attribute), 33
parameter (reikna.core.computation.ComputationCallable

attribute), 35
parameters (reikna.core.Signature attribute), 33
persistent_array() (reikna.core.computation.ComputationPlan

method), 35
philox() (in module reikna.cbrng.bijections), 44
Platform (class in reikna.cluda.api), 22
polar() (in module reikna.cluda.functions), 28
polar_unit() (in module reikna.cluda.functions), 28
pow() (in module reikna.cluda.functions), 28
Predicate (class in reikna.algorithms), 39
predicate_sum() (in module reikna.algorithms), 39
prepare() (reikna.cluda.api.Kernel method), 23
prepared_call() (reikna.cluda.api.Kernel method), 23
product() (in module reikna.helpers), 19
Program (class in reikna.cluda.api), 23
PureParallel (class in reikna.algorithms), 37
PureParallel.compiled_signature() (in module

reikna.algorithms), 37

R
RANDOMS_PER_CALL (C macro), 45

Index 63

reikna Documentation, Release 0.7.1

randoms_per_call (reikna.cbrng.samplers.Sampler
attribute), 45

raw_functions (reikna.cbrng.bijections.Bijection at-
tribute), 43

real_for() (in module reikna.cluda.dtypes), 31
Reduce (class in reikna.algorithms), 38
reference() (reikna.cbrng.tools.KeyGenerator method), 46
reikna.algorithms (module), 37
reikna.cbrng (module), 42
reikna.cbrng.bijections (module), 43
reikna.cbrng.samplers (module), 45
reikna.cbrng.tools (module), 46
reikna.cluda (module), 20
reikna.cluda.api (module), 21
reikna.cluda.dtypes (module), 30
reikna.cluda.functions (module), 28
reikna.cluda.kernel (module), 28
reikna.cluda.tempalloc (module), 27
reikna.core (module), 32
reikna.core.computation (module), 34
reikna.core.transformation (module), 36
reikna.fft (module), 40
reikna.helpers (module), 19
reikna.linalg (module), 39
reikna.transformations (module), 46
reikna.version (module), 18
release (in module reikna.version), 18
release() (reikna.cluda.api.Thread method), 26
rename() (reikna.core.Parameter method), 32
Result (C type), 45
result_type() (in module reikna.cluda.dtypes), 31

S
sample (C type), 45
Sampler (class in reikna.cbrng.samplers), 45
sampler_name() (reikna.cbrng.CBRNG class method), 43
Scan (class in reikna.algorithms), 38
set_constant() (reikna.cluda.api.Kernel method), 23
set_constant() (reikna.cluda.api.Program method), 23
set_constant() (reikna.cluda.api.StaticKernel method), 24
shape (reikna.cluda.api.Array attribute), 22
shape (reikna.core.transformation.KernelParameter at-

tribute), 36
shape (reikna.core.Type attribute), 32
Signature (class in reikna.core), 32
signature (reikna.core.Computation attribute), 33
signature (reikna.core.computation.ComputationCallable

attribute), 34
size (reikna.cluda.api.Buffer attribute), 21
SIZE_T (C macro), 29
Snippet (class in reikna.cluda), 20
source (reikna.cluda.api.Program attribute), 23
source (reikna.cluda.api.StaticKernel attribute), 23
split_complex() (in module reikna.transformations), 47

State (C type), 44
StaticKernel (class in reikna.cluda.api), 23
store_combined_idx() (reikna.core.transformation.KernelParameter

method), 36
store_idx (reikna.core.transformation.KernelParameter

attribute), 36
store_same (reikna.core.transformation.KernelParameter

attribute), 36
strides (reikna.cluda.api.Array attribute), 22
strides (reikna.core.transformation.KernelParameter at-

tribute), 36
strides (reikna.core.Type attribute), 32
supported_api_ids() (in module reikna.cluda), 21
supports_api() (in module reikna.cluda), 21
supports_dtype() (reikna.cluda.api.DeviceParameters

method), 22
synchronize() (reikna.cluda.api.Thread method), 26

T
temp_alloc (reikna.cluda.api.Thread attribute), 24
temp_array() (reikna.cluda.api.Thread method), 26
temp_array() (reikna.core.computation.ComputationPlan

method), 35
temp_array_like() (reikna.core.computation.ComputationPlan

method), 35
template_def() (in module reikna.helpers), 19
template_for() (in module reikna.helpers), 19
template_from() (in module reikna.helpers), 19
TemporaryManager (class in reikna.cluda.tempalloc), 27
Thread (class in reikna.cluda.api), 24
thread (reikna.cluda.api.Array attribute), 22
thread (reikna.core.computation.ComputationCallable at-

tribute), 34
threefry() (in module reikna.cbrng.bijections), 44
to_device() (reikna.cluda.api.Thread method), 27
Transformation (class in reikna.core), 34
TransformationParameter (class in

reikna.core.transformation), 36
Transpose (class in reikna.algorithms), 37
Transpose.compiled_signature() (in module

reikna.algorithms), 38
TrivialManager (class in reikna.cluda.tempalloc), 27
Type (class in reikna.core), 32

U
uint32 (C type), 44
uint64 (C type), 44
uniform_float() (in module reikna.cbrng.samplers), 45
uniform_integer() (in module reikna.cbrng.samplers), 45

V
Value (C type), 45
vendor (reikna.cluda.api.Platform attribute), 22
version (in module reikna.version), 18

64 Index

reikna Documentation, Release 0.7.1

version (reikna.cluda.api.Platform attribute), 23
virtual_global_flat_id (C function), 30
virtual_global_flat_size (C function), 30
virtual_global_id (C function), 30
virtual_global_size (C function), 30
virtual_group_id (C function), 30
virtual_local_id (C function), 30
virtual_local_size (C function), 30
virtual_num_groups (C function), 30
VIRTUAL_SKIP_THREADS (C macro), 30
vonmises() (in module reikna.cbrng.samplers), 46
VSIZE_T (C macro), 29

W
warp_size (reikna.cluda.api.DeviceParameters attribute),

22
WITHIN_KERNEL (C macro), 29
Word (C type), 44
word_dtype (reikna.cbrng.bijections.Bijection attribute),

43
wrap_in_tuple() (in module reikna.helpers), 20

Z
zero_ctr() (in module reikna.cluda.dtypes), 31
ZeroOffsetManager (class in reikna.cluda.tempalloc), 27

Index 65

	Community resources
	Contents
	Introduction
	Tutorial: modules and snippets
	Tutorial: basics
	Tutorial: advanced topics
	API reference
	Release history

	Indices and tables
	Python Module Index

